Nothing Special   »   [go: up one dir, main page]

He et al., 2023 - Google Patents

Multimodal remote sensing image segmentation with intuition-inspired hypergraph modeling

He et al., 2023

Document ID
6962970159291831639
Author
He Q
Sun X
Diao W
Yan Z
Yao F
Fu K
Publication year
Publication venue
IEEE Transactions on Image Processing

External Links

Snippet

Multimodal remote sensing (RS) image segmentation aims to comprehensively utilize multiple RS modalities to assign pixel-level semantics to the studied scenes, which can provide a new perspective for global city understanding. Multimodal segmentation inevitably …
Continue reading at ieeexplore.ieee.org (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6217Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
    • G06K9/6232Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods
    • G06K9/6247Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods based on an approximation criterion, e.g. principal component analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/36Image preprocessing, i.e. processing the image information without deciding about the identity of the image
    • G06K9/46Extraction of features or characteristics of the image
    • G06K9/4604Detecting partial patterns, e.g. edges or contours, or configurations, e.g. loops, corners, strokes, intersections
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6267Classification techniques
    • G06K9/6268Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor; File system structures therefor
    • G06F17/30861Retrieval from the Internet, e.g. browsers
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/00624Recognising scenes, i.e. recognition of a whole field of perception; recognising scene-specific objects
    • G06K9/0063Recognising patterns in remote scenes, e.g. aerial images, vegetation versus urban areas
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N99/00Subject matter not provided for in other groups of this subclass
    • G06N99/005Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computer systems based on biological models
    • G06N3/02Computer systems based on biological models using neural network models
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/50Computer-aided design
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/20Image acquisition
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K2209/00Indexing scheme relating to methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computer systems utilising knowledge based models

Similar Documents

Publication Publication Date Title
He et al. Multimodal remote sensing image segmentation with intuition-inspired hypergraph modeling
Li et al. Learning deep semantic segmentation network under multiple weakly-supervised constraints for cross-domain remote sensing image semantic segmentation
Zhang et al. EMS-GCN: An end-to-end mixhop superpixel-based graph convolutional network for hyperspectral image classification
Sun et al. Receptive-field and direction induced attention network for infrared dim small target detection with a large-scale dataset IRDST
Wei et al. AGConv: Adaptive graph convolution on 3D point clouds
Han et al. AutoNAS: Automatic neural architecture search for hyperspectral unmixing
Wu et al. Dual adaptive transformations for weakly supervised point cloud segmentation
Cheng et al. Cascaded non-local neural network for point cloud semantic segmentation
Yang et al. Multi-directional guidance network for fine-grained visual classification
Wang et al. SDCDNet: A semi-dual change detection network framework with super-weak label for remote sensing image
Huang et al. Edge-based feature extraction module for 3D point cloud shape classification
Chen et al. SA-SinGAN: self-attention for single-image generation adversarial networks
Liu et al. Semantic interleaving global channel attention for multilabel remote sensing image classification
Liu et al. Multiregion scale-aware network for building extraction from high-resolution remote sensing images
Wang et al. Multi-view face generation via unpaired images
Deng et al. A Dual Spatial-Graph Refinement Network for Building Extraction from Aerial Images
Hu et al. Decouple the object: Component-level semantic recognizer for point clouds classification
Wang et al. Generative data augmentation by conditional inpainting for multi-class object detection in infrared images
Zhao et al. Classification of hyperspectral images based on two-channel convolutional neural network combined with support vector machine algorithm
Chen et al. Multi-feature fusion point cloud completion network
Chitturi Building detection in deformed satellite images using mask r-cnn
Wang et al. Cross-layer progressive attention bilinear fusion method for fine-grained visual classification
Dong et al. ICIF: Image fusion via information clustering and image features
Du et al. 3D mixed CNNs with edge-point feature learning
Gao et al. IEEE access special section editorial: Big data learning and discovery