Alkhalayfeh et al., 2021 - Google Patents
An overview of enhanced polymer solar cells with embedded plasmonic nanoparticlesAlkhalayfeh et al., 2021
- Document ID
- 6948327905529958941
- Author
- Alkhalayfeh M
- Aziz A
- Pakhuruddin M
- Publication year
- Publication venue
- Renewable and Sustainable Energy Reviews
External Links
Snippet
In recent times, several strategies have been developed to enhance the power conversion efficiency (PCE) of thin-film polymer or organic solar cells (PSCs or OSCs). One of such strategy is the plasmonic effect, which has been widely investigated and has shown …
- 239000002105 nanoparticle 0 title abstract description 121
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/54—Material technologies
- Y02E10/549—Material technologies organic PV cells
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/0032—Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
- H01L51/0045—Carbon containing materials, e.g. carbon nanotubes, fullerenes
- H01L51/0046—Fullerenes, e.g. C60, C70
- H01L51/0047—Fullerenes, e.g. C60, C70 comprising substituents, e.g. PCBM
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/42—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for sensing infra-red radiation, light, electro-magnetic radiation of shorter wavelength or corpuscular radiation and adapted for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation using organic materials as the active part, or using a combination of organic materials with other material as the active part; Multistep processes for their manufacture
- H01L51/44—Details of devices
- H01L51/441—Electrodes
- H01L51/442—Electrodes transparent electrodes, e.g. ITO, TCO
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/52—PV systems with concentrators
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/42—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for sensing infra-red radiation, light, electro-magnetic radiation of shorter wavelength or corpuscular radiation and adapted for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation using organic materials as the active part, or using a combination of organic materials with other material as the active part; Multistep processes for their manufacture
- H01L51/4253—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for sensing infra-red radiation, light, electro-magnetic radiation of shorter wavelength or corpuscular radiation and adapted for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation using organic materials as the active part, or using a combination of organic materials with other material as the active part; Multistep processes for their manufacture comprising bulk hetero-junctions, e.g. interpenetrating networks
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L31/00—Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0352—Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
- H01L31/035209—Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
- H01L31/035227—Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nano-rods
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/0032—Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
- H01L51/0034—Organic polymers or oligomers
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/50—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes [OLED] or polymer light emitting devices [PLED];
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L31/00—Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2251/00—Indexing scheme relating to organic semiconductor devices covered by group H01L51/00
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Alkhalayfeh et al. | An overview of enhanced polymer solar cells with embedded plasmonic nanoparticles | |
Ginting et al. | Plasmonic effect of gold nanostars in highly efficient organic and perovskite solar cells | |
Li et al. | Plasmon-enhanced organic and perovskite solar cells with metal nanoparticles | |
Choi et al. | Multipositional silica-coated silver nanoparticles for high-performance polymer solar cells | |
Luo et al. | Recent advances in organic photovoltaics: device structure and optical engineering optimization on the nanoscale | |
Jung et al. | Plasmonic organic solar cells employing nanobump assembly via aerosol-derived nanoparticles | |
Xu et al. | Plasmon resonance enhanced optical absorption in inverted polymer/fullerene solar cells with metal nanoparticle-doped solution-processable TiO2 layer | |
Jankovic et al. | Active layer-incorporated, spectrally tuned Au/SiO2 core/shell nanorod-based light trapping for organic photovoltaics | |
Wu et al. | Prominent efficiency enhancement in perovskite solar cells employing silica-coated gold nanorods | |
Stratakis et al. | Nanoparticle-based plasmonic organic photovoltaic devices | |
Gan et al. | Plasmonic‐enhanced organic photovoltaics: Breaking the 10% efficiency barrier | |
Yang et al. | High‐efficiency polymer solar cells achieved by doping plasmonic metallic nanoparticles into dual charge selecting interfacial layers to enhance light trapping | |
Ahn et al. | Plasmonic nanostructures for organic photovoltaic devices | |
Yao et al. | Performance improvement of polymer solar cells by surface-energy-induced dual Plasmon resonance | |
Shen et al. | High-performance polymer solar cells enabled by copper nanoparticles-induced plasmon resonance enhancement | |
Lan et al. | Omnidirectional and broadband light absorption enhancement in 2-D photonic-structured organic solar cells | |
Kim et al. | Semi-transparent perovskite solar cells developed by considering human luminosity function | |
Liu et al. | A review on plasmonic nanostructures for efficiency enhancement of organic solar cells | |
Mahmoud et al. | Optically-enhanced performance of polymer solar cells with low concentration of gold nanorods in the anodic buffer layer | |
Liu et al. | Unique gold nanorods embedded active layer enabling strong plasmonic effect to improve the performance of polymer photovoltaic devices | |
Liu et al. | Boosted electron transport and enlarged built-in potential by eliminating the interface barrier in organic solar cells | |
Wang et al. | Improved performance of polymer solar cells by thermal evaporation of AgAl alloy nanostructures into the hole-transport layer | |
Yang et al. | Optical management in organic photovoltaic devices | |
Liu et al. | Performance improvement of inverted polymer solar cells by doping Au nanoparticles into TiO2 cathode buffer layer | |
He et al. | Improved power conversion efficiency of inverted organic solar cells by incorporating Au nanorods into active layer |