Abed et al., 2012 - Google Patents
Exploration and evaluation of traditional TCP congestion control techniquesAbed et al., 2012
View HTML- Document ID
- 6784478882746725438
- Author
- Abed G
- Ismail M
- Jumari K
- Publication year
- Publication venue
- Journal of King Saud University-Computer and Information Sciences
External Links
Snippet
Abstract TCP or Transmission Control Protocol represents one of the prevailing “languages” of the Internet Protocol Suite, complementing the Internet Protocol (IP), and therefore the entire suite is commonly referred to as TCP/IP. TCP provides reliability to data transferring in …
- 235000010384 tocopherol 0 title abstract description 165
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/10—Flow control or congestion control
- H04L47/19—Flow control or congestion control at layers above network layer
- H04L47/193—Flow control or congestion control at layers above network layer at transport layer, e.g. TCP related
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. van Duuren system; ARQ protocols
- H04L1/1867—Arrangements specific to the transmitter end
- H04L1/1887—Scheduling and prioritising arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. van Duuren system; ARQ protocols
- H04L1/1829—Arrangements specific to the receiver end
- H04L1/1848—Time-out mechanisms
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. van Duuren system; ARQ protocols
- H04L1/1829—Arrangements specific to the receiver end
- H04L1/1854—Scheduling and prioritising arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L69/00—Application independent communication protocol aspects or techniques in packet data networks
- H04L69/16—Transmission control protocol/internet protocol [TCP/IP] or user datagram protocol [UDP]
- H04L69/163—Adaptation of TCP data exchange control procedures
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/1607—Details of the supervisory signal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/10—Flow control or congestion control
- H04L47/27—Window size evaluation or update, e.g. using information derived from ACK packets
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/10—Flow control or congestion control
- H04L47/32—Packet discarding or delaying
- H04L47/323—Discarding or blocking control packets, e.g. ACK packets
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/10—Flow control or congestion control
- H04L47/14—Flow control or congestion control in wireless networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/10—Flow control or congestion control
- H04L47/28—Flow control or congestion control using time considerations
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L69/00—Application independent communication protocol aspects or techniques in packet data networks
- H04L69/16—Transmission control protocol/internet protocol [TCP/IP] or user datagram protocol [UDP]
- H04L69/161—Implementation details of TCP/IP or UDP/IP stack architecture; Specification of modified or new header fields
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W28/00—Network traffic or resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing packet switching networks
- H04L43/08—Monitoring based on specific metrics
- H04L43/0852—Delays
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network-specific arrangements or communication protocols supporting networked applications
- H04L67/10—Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L65/00—Network arrangements or protocols for real-time communications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/02—Details
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Abed et al. | Exploration and evaluation of traditional TCP congestion control techniques | |
Wu et al. | JTCP: Jitter-based TCP for heterogeneous wireless networks | |
US7965698B2 (en) | Method for preventing unnecessary retransmission due to delayed transmission in wireless network and communication device using the same | |
Abdelsalam et al. | TCP wave: a new reliable transport approach for future internet | |
CN101854738B (en) | Transmission control protocol method for satellite network | |
Abed et al. | A survey on performance of congestion control mechanisms for standard TCP versions | |
Braun et al. | An empirical study of receiver-based aimd flow-control strategies for ccn | |
Al-Zubi et al. | Packet recycling and delayed ACK for improving the performance of TCP over MANETs | |
Govindarajan et al. | Enhanced TCP NCE: A modified non-congestion events detection, differentiation and reaction to improve the end-to-end performance over manet | |
Dunaytsev et al. | Modeling TCP SACK performance over wireless channels with completely reliable ARQ/FEC | |
Dalal et al. | Improving TCP performance over wireless network with frequent disconnections | |
Leung et al. | Methods to improve TCP throughput in wireless networks with high delay variability [3G network example] | |
Sinky et al. | Cross-layer assisted TCP for seamless handoff in heterogeneous mobile wireless systems | |
Lee et al. | A cross-layer approach for TCP optimization over wireless and mobile networks | |
Gurtov et al. | Measurement and analysis of tcp-friendly rate control for vertical handovers | |
Attiya | New strategy for congestion control based on dynamic adjustment of congestion window | |
Sanchez et al. | TCP/IP performance over EGPRS network | |
Möller | Automatic control in TCP over wireless | |
Itaya et al. | Dynamic parameter adjustment for available-bandwidth estimation of TCP in wired–wireless networks | |
Bagadi et al. | A Survey of Reliable Transport Layer Protocols for Wireless Sensor Network | |
Oo et al. | How good delayed acknowledgement effects rate-based pacing tcp over multi-hop wireless network | |
Miyim | Techniques for Throughput Enhancement in Wireless Networks | |
Utsumi et al. | Utilization-based congestion control: improvement of friendliness with TCP over wireless links | |
Wu et al. | A network-based solution for TCP in wireless systems with opportunistic scheduling | |
Qin et al. | Enhanced reliable transmission control protocol for spatial information networks |