Nothing Special   »   [go: up one dir, main page]

Abrar et al., 2021 - Google Patents

A multi-agent approach for personalized hypertension risk prediction

Abrar et al., 2021

View PDF
Document ID
6615334785208761719
Author
Abrar S
Loo C
Kubota N
Publication year
Publication venue
IEEE Access

External Links

Snippet

Hypertension is a global health problem and a leading factor in severe and life-threatening cardiovascular diseases (CVD) and stroke. The onset is dependent on individual lifestyle choices, and no single root cause of the condition exists. Various machine learning solutions …
Continue reading at ieeexplore.ieee.org (PDF) (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • G06F19/30Medical informatics, i.e. computer-based analysis or dissemination of patient or disease data
    • G06F19/34Computer-assisted medical diagnosis or treatment, e.g. computerised prescription or delivery of medication or diets, computerised local control of medical devices, medical expert systems or telemedicine
    • G06F19/345Medical expert systems, neural networks or other automated diagnosis
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computer systems based on biological models
    • G06N3/02Computer systems based on biological models using neural network models
    • G06N3/04Architectures, e.g. interconnection topology
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computer systems utilising knowledge based models
    • G06N5/04Inference methods or devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computer systems based on biological models
    • G06N3/02Computer systems based on biological models using neural network models
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N99/00Subject matter not provided for in other groups of this subclass
    • G06N99/005Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • G06F19/30Medical informatics, i.e. computer-based analysis or dissemination of patient or disease data
    • G06F19/32Medical data management, e.g. systems or protocols for archival or communication of medical images, computerised patient records or computerised general medical references
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computer systems utilising knowledge based models
    • G06N5/02Knowledge representation
    • G06N5/022Knowledge engineering, knowledge acquisition
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for a specific business sector, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/22Health care, e.g. hospitals; Social work
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/04Detecting, measuring or recording bioelectric signals of the body of parts thereof
    • A61B5/0402Electrocardiography, i.e. ECG
    • A61B5/0452Detecting specific parameters of the electrocardiograph cycle
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F15/00Digital computers in general; Data processing equipment in general
    • G06F15/18Digital computers in general; Data processing equipment in general in which a programme is changed according to experience gained by the computer itself during a complete run; Learning machines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management

Similar Documents

Publication Publication Date Title
Khan et al. A healthcare monitoring system for the diagnosis of heart disease in the IoMT cloud environment using MSSO-ANFIS
Obasi et al. Towards comparing and using Machine Learning techniques for detecting and predicting Heart Attack and Diseases
Li et al. Signal quality and data fusion for false alarm reduction in the intensive care unit
US20210125722A1 (en) System and method for processing human related data including physiological signals to make context aware decisions with distributed machine learning at edge and cloud
Silva et al. Rating organ failure via adverse events using data mining in the intensive care unit
Patro et al. Ambient assisted living predictive model for cardiovascular disease prediction using supervised learning
Li et al. Blood pressure prediction via recurrent models with contextual layer
Zaeri-Amirani et al. A feature selection method based on shapley value to false alarm reduction in icus a genetic-algorithm approach
Forkan et al. A probabilistic model for early prediction of abnormal clinical events using vital sign correlations in home-based monitoring
Abrar et al. A multi-agent approach for personalized hypertension risk prediction
Firdaus et al. Deep neural network with hyperparameter tuning for detection of heart disease
Arunachalam Cardiovascular disease prediction model using machine learning algorithms
Pardeshi et al. Efficient Approach for Detecting Cardiovascular Disease Using Machine Learning
KR102421172B1 (en) Smart Healthcare Monitoring System and Method for Heart Disease Prediction Based On Ensemble Deep Learning and Feature Fusion
Prusty et al. Comparative analysis and prediction of coronary heart disease
Rose et al. Heart Attack Prediction using Machine Learning Techniques
Karthikeyini et al. Heart disease prognosis using D-GRU with logistic chaos honey badger optimization in IoMT framework
EP4224373A1 (en) System for forecasting a mental state of a subject and method
Raman et al. Smart Use of Machine Learning in Heart Disease Identification
Mythili et al. Machine Learning Techniques for Diabetes Prediction: A Comparative Analysis
Abrar et al. A personalised blood pressure prediction system using Gaussian mixture regression and online recurrent extreme learning machine
Dwaikat et al. Hybrid Model for Coronary Artery Disease Classification Based on Neural Networks and Evolutionary Algorithms.
Shuvo An early detection of heart disease using machine learning (recurrent neural network): ML research on heart disease prediction
Shah et al. Early detection of heart disease using advances of machine learning for large-scale patient datasets
Khan et al. Heart disease prediction using novel Ensemble and Blending based Cardiovascular Disease Detection Networks: EnsCVDD-Net and BlCVDD-Net