Kusetogullari, 2018 - Google Patents
Unsupervised text binarization in handwritten historical documents using k-means clusteringKusetogullari, 2018
View PDF- Document ID
- 6563215680946497128
- Author
- Kusetogullari H
- Publication year
- Publication venue
- Proceedings of SAI Intelligent Systems Conference (IntelliSys) 2016: Volume 2
External Links
Snippet
In this paper, we propose a novel technique for unsupervised text binarization in handwritten historical documents using k-means clustering. In the text binarization problem, there are many challenges such as noise, faint characters and bleed-through and it is necessary to …
- 238000003064 k means clustering 0 title abstract description 15
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/36—Image preprocessing, i.e. processing the image information without deciding about the identity of the image
- G06K9/46—Extraction of features or characteristics of the image
- G06K9/4604—Detecting partial patterns, e.g. edges or contours, or configurations, e.g. loops, corners, strokes, intersections
- G06K9/4609—Detecting partial patterns, e.g. edges or contours, or configurations, e.g. loops, corners, strokes, intersections by matching or filtering
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6268—Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06K9/6256—Obtaining sets of training patterns; Bootstrap methods, e.g. bagging, boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6279—Classification techniques relating to the number of classes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6201—Matching; Proximity measures
- G06K9/6202—Comparing pixel values or logical combinations thereof, or feature values having positional relevance, e.g. template matching
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/68—Methods or arrangements for recognition using electronic means using sequential comparisons of the image signals with a plurality of references in which the sequence of the image signals or the references is relevant, e.g. addressable memory
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/20—Image acquisition
- G06K9/32—Aligning or centering of the image pick-up or image-field
- G06K9/3233—Determination of region of interest
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/36—Image preprocessing, i.e. processing the image information without deciding about the identity of the image
- G06K9/38—Quantising the analogue image signal, e.g. histogram thresholding for discrimination between background and foreground patterns
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/20—Image acquisition
- G06K9/34—Segmentation of touching or overlapping patterns in the image field
- G06K9/342—Cutting or merging image elements, e.g. region growing, watershed, clustering-based techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N99/00—Subject matter not provided for in other groups of this subclass
- G06N99/005—Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K2209/00—Indexing scheme relating to methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Aghdam et al. | A practical approach for detection and classification of traffic signs using convolutional neural networks | |
Khare et al. | A blind deconvolution model for scene text detection and recognition in video | |
Rafiee et al. | Region-of-interest extraction in low depth of field images using ensemble clustering and difference of Gaussian approaches | |
CN109685065B (en) | Layout analysis method and system for automatically classifying test paper contents | |
Parag et al. | A context-aware delayed agglomeration framework for electron microscopy segmentation | |
Mesquita et al. | Parameter tuning for document image binarization using a racing algorithm | |
Mukherjee et al. | Enhancement of image resolution by binarization | |
US11600088B2 (en) | Utilizing machine learning and image filtering techniques to detect and analyze handwritten text | |
Milyaev et al. | Fast and accurate scene text understanding with image binarization and off-the-shelf OCR | |
Li et al. | Sauvolanet: learning adaptive sauvola network for degraded document binarization | |
Das | A statistical tool based binarization method for document images | |
Abdullah et al. | Novel Adaptive Binarization Method for Degraded Document Images. | |
Kusetogullari | Unsupervised text binarization in handwritten historical documents using k-means clustering | |
Rahal et al. | Layout analysis of historical document images using a light fully convolutional network | |
Ramírez-Ortegón et al. | Unsupervised measures for parameter selection of binarization algorithms | |
Kumar et al. | PCB defect classification using logical combination of segmented copper and non-copper part | |
Ghoshal et al. | SVM and MLP based segmentation and recognition of text from scene images through an effective binarization scheme | |
Shirdhonkar et al. | Discrimination between printed and handwritten text in documents | |
Rabeux et al. | Quality evaluation of degraded document images for binarization result prediction | |
Pandey et al. | Review of different binarization techniques used in different areas of image analysis | |
Neycharan et al. | Edge color transform: a new operator for natural scene text localization | |
Gupta et al. | A local-to-global approach for document image binarization | |
Kayumov et al. | An effect of binarization on handwritten digits recognition by hierarchical neural networks | |
Ayyalasomayajula et al. | Historical document binarization combining semantic labeling and graph cuts | |
Krupiński et al. | Improved two-step binarization of degraded document images based on Gaussian mixture model |