Nothing Special   »   [go: up one dir, main page]

Paliaroutis et al., 2018 - Google Patents

A placement-aware soft error rate estimation of combinational circuits for multiple transient faults in CMOS technology

Paliaroutis et al., 2018

Document ID
6415593314210174710
Author
Paliaroutis G
Tsoumanis P
Evmorfopoulos N
Dimitriou G
Stamoulis G
Publication year
Publication venue
2018 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)

External Links

Snippet

A considerable disadvantage that comes with the downscaling of the CMOS technology is the ever-increasing susceptibility of Integrated Circuits (ICs) to soft errors. Therefore, the study of the radiation-induced transient faults in combinational logic has become one of the …
Continue reading at ieeexplore.ieee.org (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/50Computer-aided design
    • G06F17/5068Physical circuit design, e.g. layout for integrated circuits or printed circuit boards
    • G06F17/5081Layout analysis, e.g. layout verification, design rule check
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/3185Reconfiguring for testing, e.g. LSSD, partitioning
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/50Computer-aided design
    • G06F17/5009Computer-aided design using simulation
    • G06F17/5022Logic simulation, e.g. for logic circuit operation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/3183Generation of test inputs, e.g. test vectors, patterns or sequence
    • G01R31/318342Generation of test inputs, e.g. test vectors, patterns or sequence by preliminary fault modelling, e.g. analysis, simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/50Computer-aided design
    • G06F17/5009Computer-aided design using simulation
    • G06F17/5036Computer-aided design using simulation for analog modelling, e.g. for circuits, spice programme, direct methods, relaxation methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/50Computer-aided design
    • G06F17/5009Computer-aided design using simulation
    • G06F17/504Formal methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/31725Timing aspects, e.g. clock distribution, skew, propagation delay
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/31718Logistic aspects, e.g. binning, selection, sorting of devices under test, tester/handler interaction networks, Test management software, e.g. software for test statistics or test evaluation, yield analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/30Marginal testing, e.g. varying supply voltage
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F2217/00Indexing scheme relating to computer aided design [CAD]
    • G06F2217/70Fault tolerant, i.e. transient fault suppression
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/22Detection or location of defective computer hardware by testing during standby operation or during idle time, e.g. start-up testing
    • G06F11/24Marginal checking or other specified testing methods not covered by G06F11/26, e.g. race tests
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F2217/00Indexing scheme relating to computer aided design [CAD]
    • G06F2217/78Power analysis and optimization
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F1/00Details of data-processing equipment not covered by groups G06F3/00 - G06F13/00, e.g. cooling, packaging or power supply specially adapted for computer application
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled

Similar Documents

Publication Publication Date Title
Rao et al. Computing the soft error rate of a combinational logic circuit using parameterized descriptors
Narasimham et al. Characterization of digital single event transient pulse-widths in 130-nm and 90-nm CMOS technologies
Mohanram et al. Cost-effective approach for reducing soft error failure rate in logic circuits
Nguyen et al. Chip-level soft error estimation method
Eslami et al. A survey on fault injection methods of digital integrated circuits
Seifert et al. Timing vulnerability factors of sequentials
Zhou et al. Gate sizing to radiation harden combinational logic
Fazeli et al. Soft error rate estimation of digital circuits in the presence of multiple event transients (METs)
Ebrahimi et al. A layout-based approach for multiple event transient analysis
Rao et al. An efficient static algorithm for computing the soft error rates of combinational circuits
Mahatme et al. Impact of supply voltage and frequency on the soft error rate of logic circuits
Paliaroutis et al. A placement-aware soft error rate estimation of combinational circuits for multiple transient faults in CMOS technology
Cao et al. A layout-based soft error vulnerability estimation approach for combinational circuits considering single event multiple transients (SEMTs)
US20080281572A1 (en) Integrated circuit (ic) design method and method of analyzing radiation-induced single-event upsets in cmos logic designs
Ramanarayanan et al. Modeling soft errors at the device and logic levels for combinational circuits
Kiddie et al. Alternative standard cell placement strategies for single-event multiple-transient mitigation
Kiamehr et al. Chip-level modeling and analysis of electrical masking of soft errors
Rajaei et al. Soft error rate estimation for combinational logic in presence of single event multiple transients
Mousavi et al. A generic methodology to compute design sensitivity to SEU in SRAM-based FPGA
Kehl et al. An efficient SER estimation method for combinational circuits
Asadi et al. Soft error modeling and remediation techniques in ASIC designs
Kiddie et al. Single-event multiple-transient characterization and mitigation via alternative standard cell placement methods
Jiang et al. An empirical model for predicting SE cross section for combinational logic circuits in advanced technologies
Rao et al. A detailed characterization of errors in logic circuits due to single-event transients
Narasimham et al. Test circuit for measuring pulse widths of single-event transients causing soft errors