Bhaumik et al., 2013 - Google Patents
On downstream coax framing in EPON protocol over coax (EPoC)Bhaumik et al., 2013
- Document ID
- 6299236026178758050
- Author
- Bhaumik P
- Thota S
- Zhangli K
- Chen J
- Elbakoury H
- Fang L
- Mukherjee B
- Publication year
- Publication venue
- 2013 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS)
External Links
Snippet
In this short paper, we propose three different framing approaches for downstream transmissions in the coax segment of EPON Protocol over Coax (EPoC), based on how subcarriers in an orthogonal frequency division multiplexed (OFDM) symbol are modulated …
- 238000009432 framing 0 title abstract description 9
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0062—Network aspects
- H04Q11/0067—Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
- H04J14/0227—Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
- H04J14/0228—Wavelength allocation for communications one-to-all, e.g. broadcasting wavelengths
- H04J14/023—Wavelength allocation for communications one-to-all, e.g. broadcasting wavelengths in WDM passive optical networks [WDM-PON]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. local area networks [LAN], wide area networks [WAN]
- H04L12/2801—Broadband local area networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0062—Network aspects
- H04Q11/0071—Provisions for the electrical-optical layer interface
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. local area networks [LAN], wide area networks [WAN]
- H04L12/2854—Wide area networks, e.g. public data networks
- H04L12/2856—Access arrangements, e.g. Internet access
- H04L12/2858—Access network architectures
- H04L12/2861—Point-to-multipoint connection from the data network to the subscribers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
- H04J14/0227—Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
- H04J14/0241—Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
- H04J14/0242—Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
- H04J14/0245—Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU
- H04J14/0247—Sharing one wavelength for at least a group of ONUs
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2602—Signal structure
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
- H04J14/0278—WDM optical network architectures
- H04J14/0282—WDM tree architectures
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0003—Two-dimensional division
- H04L5/0005—Time-frequency
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance or administration or management of packet switching networks
- H04L41/02—Arrangements for maintenance or administration or management of packet switching networks involving integration or standardization
- H04L41/0213—Arrangements for maintenance or administration or management of packet switching networks involving integration or standardization using standardized network management protocols, e.g. simple network management protocol [SNMP] or common management interface protocol [CMIP]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J3/00—Time-division multiplex systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M11/00—Telephonic communication systems adapted for combination with other electrical systems
- H04M11/06—Simultaneous speech and telegraphic or other data transmission over the same conductors
- H04M11/062—Simultaneous speech and telegraphic or other data transmission over the same conductors using different frequency bands for speech and other data
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104541518B (en) | A kind of method and apparatus of the coaxial convergence-level of structure Ethernet passive optical network | |
US9654245B2 (en) | Optimizing optical systems using code division multiple access and/or orthogonal frequency-division multiplexing | |
EP2885895B1 (en) | Delivering downstream data in ethernet pon over coax network | |
US9455785B2 (en) | Unified network management of hybrid fiber coaxial (HFC) network | |
US9130878B2 (en) | Traffic switching in hybrid fiber coaxial (HFC) network | |
US8000604B2 (en) | Orthogonal frequency division multiple access (OFDMA) based passive optical network (PON) architecture and its extension to long distance | |
US8897651B2 (en) | Passive optical network data over cable service interface specification upstream proxy architecture over the next generation hybrid fiber-coaxial networks | |
US20080310842A1 (en) | Docsis compatible pon architecture | |
US20140348179A1 (en) | Allocating Orthogonal Frequency-Division Multiple Access (OFDMA) Resources In Data Over Cable Services Interface Specificaton (DOCSIS) Networks | |
US9219567B2 (en) | Converged PON for TDMA-PON service based on OFDMA-PON | |
US9331786B2 (en) | Managing downstream non-broadcast transmission in an ethernet passive optical network (EPON) protocol over coax (EPoC) network | |
US9860617B2 (en) | Upstream frame configuration for ethernet passive optical network protocol over coax (EPoC) networks | |
Butt et al. | Evolution of access network from copper to PON-Current status | |
Bhaumik et al. | EPON protocol over coax (EPoC): overview and design issues from a MAC layer perspective? | |
Bhaumik et al. | On downstream coax framing in EPON protocol over coax (EPoC) | |
US9825705B2 (en) | Systems and methods for sharing of optical network terminals in passive optical network | |
Bhaumik et al. | On downstream transmissions in EPON Protocol over Coax (EPoC): An analysis of Coax framing approaches and other relevant considerations | |
Ansari et al. | PON architectures | |
Giacoumidis | Adaptive optical OFDM for local and access networks | |
Lim et al. | MAC Protocol Design for the Support of DBA in OFDMA-PON Networks | |
FLA et al. | 10G EPON: No boundaries for bandwidth under evolution of PON for FTTx Broadband Access Applications |