Nothing Special   »   [go: up one dir, main page]

Zhu et al., 2015 - Google Patents

An average power tracking method for wideband highly nonlinear power amplifiers

Zhu et al., 2015

Document ID
6163574379548781589
Author
Zhu S
Zhang A
Xu Z
Dong X
Publication year
Publication venue
IEEE Microwave and Wireless Components Letters

External Links

Snippet

An accurate average power tracking method is presented to track and compensate the fluctuation of power amplifier (PA) output during updates of digital predistorter. Firstly, joint distortion probability distribution (JDPD) of the predistorter input signal and PA compression …
Continue reading at ieeexplore.ieee.org (other versions)

Classifications

    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • H03F1/3247Modifications of amplifiers to reduce non-linear distortion using predistortion circuits using feedback acting on predistortion circuits
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • H03F1/3258Modifications of amplifiers to reduce non-linear distortion using predistortion circuits based on polynomial terms
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • H03F1/3282Acting on the phase and the amplitude of the input signal
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • H03F1/3252Modifications of amplifiers to reduce non-linear distortion using predistortion circuits using multiple parallel paths between input and output
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0261Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the polarisation voltage or current, e.g. gliding Class A
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • H03F1/0216Continuous control
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2201/00Indexing scheme relating to details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements covered by H03F1/00
    • H03F2201/32Indexing scheme relating to modifications of amplifiers to reduce non-linear distortion
    • H03F2201/3233Adaptive predistortion using lookup table, e.g. memory, RAM, ROM, LUT, to generate the predistortion
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2201/00Indexing scheme relating to details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements covered by H03F1/00
    • H03F2201/32Indexing scheme relating to modifications of amplifiers to reduce non-linear distortion
    • H03F2201/3227Adaptive predistortion based on amplitude, envelope or power level feedback from the output of the main amplifier
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/102A non-specified detector of a signal envelope being used in an amplifying circuit
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/34Negative-feedback-circuit arrangements with or without positive feedback
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/204A hybrid coupler being used at the output of an amplifier circuit

Similar Documents

Publication Publication Date Title
CN110138348B (en) Apparatus and method for adaptive crest factor reduction in dynamic predistortion
KR20100014339A (en) Method and system for baseband predistortion linearization in multi-channel wideband communication systems
Kim et al. A new wideband adaptive digital predistortion technique employing feedback linearization
Montoro et al. A new digital predictive predistorter for behavioral power amplifier linearization
Abi Hussein et al. Digital predistortion for RF power amplifiers: State of the art and advanced approaches
Liu et al. A robust and broadband digital predistortion utilizing negative feedback iteration
Singla et al. Digital predistortion of power amplifiers using look-up table method with memory effects for LTE wireless systems
Chen et al. A low complexity moving average nested GMP model for digital predistortion of broadband power amplifiers
Liu et al. On the robustness of look-up table digital predistortion in the presence of loop delay error
Suryasarman et al. Optimizing the identification of digital predistorters for improved power amplifier linearization performance
Wang et al. A joint crest factor reduction and digital predistortion for power amplifiers linearization based on clipping-and-bank-filtering
Zhu et al. An average power tracking method for wideband highly nonlinear power amplifiers
Ren Digital predistortion architecture with feedback channel nonlinear blind identification and compensation
Khawam et al. Behavioral modeling of GaN doherty power amplifiers using memoryless polar domain functions and deep neural networks
Xu et al. The threshold optimization of the canonical piecewise linear function-based model for RF PA linearization
Naraharisetti et al. Quasi-exact inverse PA model for digital predistorter linearization
Li et al. High order inverse polynomial predistortion for memoryless RF power amplifiers
Mohammady et al. Efficiency improvement in microwave power amplifiers by using Complex Gain Predistortion technique
Varahram et al. Complex Gain Predistortion in WCDMA Power Amplifiers with Memory Effects.
Bondar et al. Digital baseband predistortion of wideband power amplifiers with improved memory effects
Allegue-Martínez et al. Digital predistortion technique with in-band interference optimisation applied to DVB-T2
Quan et al. An online sideband suppression architecture for PA with strong nonlinear distortion
Zhang et al. Design of a memory polynomial predistorter for wideband envelope tracking amplifiers
Li Nonlinearity analysis and predistortion of 4G wireless communication systems
Bondar et al. A digital predistorter for wireless transmitters