Nothing Special   »   [go: up one dir, main page]

Lakshmipathy et al., 2021 - Google Patents

Influence of Cavity Materials and Selective Surface Coatings on the Performance of SCC

Lakshmipathy et al., 2021

Document ID
6116237867675979811
Author
Lakshmipathy B
Sivakumar K
Kajavali A
et al.
Publication year
Publication venue
IOP Conference Series. Materials Science and Engineering

External Links

Snippet

It is evident that the future energy demand can be compensated by using solar energy. The technological improvements are needed to trap the sunlight and have to be utilized in an efficient way. It mainly depends on the type of material which is to be used for this purpose …
Continue reading at search.proquest.com (other versions)

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F24HEATING; RANGES; VENTILATING
    • F24JPRODUCING OR USE OF HEAT NOT OTHERWISE PROVIDED FOR
    • F24J2/00Use of solar heat, e.g. solar heat collectors
    • F24J2/04Solar heat collectors having working fluid conveyed through collector
    • F24J2/06Solar heat collectors having working fluid conveyed through collector having concentrating elements
    • F24J2/10Solar heat collectors having working fluid conveyed through collector having concentrating elements having reflectors as concentrating elements
    • F24J2/14Solar heat collectors having working fluid conveyed through collector having concentrating elements having reflectors as concentrating elements semi-cylindrical or cylindro-parabolic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F24HEATING; RANGES; VENTILATING
    • F24JPRODUCING OR USE OF HEAT NOT OTHERWISE PROVIDED FOR
    • F24J2/00Use of solar heat, e.g. solar heat collectors
    • F24J2/04Solar heat collectors having working fluid conveyed through collector
    • F24J2/06Solar heat collectors having working fluid conveyed through collector having concentrating elements
    • F24J2/10Solar heat collectors having working fluid conveyed through collector having concentrating elements having reflectors as concentrating elements
    • F24J2002/1076Reflectors layout
    • F24J2002/108Assemblies of spaced reflective elements on common support, e.g. Fresnel reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F24HEATING; RANGES; VENTILATING
    • F24JPRODUCING OR USE OF HEAT NOT OTHERWISE PROVIDED FOR
    • F24J2/00Use of solar heat, e.g. solar heat collectors
    • F24J2/04Solar heat collectors having working fluid conveyed through collector
    • F24J2/06Solar heat collectors having working fluid conveyed through collector having concentrating elements
    • F24J2/07Receivers working at high temperature, e.g. for solar power plants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy
    • Y02E10/41Tower concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy
    • Y02E10/44Heat exchange systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F24HEATING; RANGES; VENTILATING
    • F24JPRODUCING OR USE OF HEAT NOT OTHERWISE PROVIDED FOR
    • F24J2/00Use of solar heat, e.g. solar heat collectors
    • F24J2/04Solar heat collectors having working fluid conveyed through collector
    • F24J2/05Solar heat collectors having working fluid conveyed through collector surrounded by a transparent enclosure, e.g. evacuated solar collectors
    • F24J2/055Solar heat collectors having working fluid conveyed through collector surrounded by a transparent enclosure, e.g. evacuated solar collectors the enclosure being cylindrical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F24HEATING; RANGES; VENTILATING
    • F24JPRODUCING OR USE OF HEAT NOT OTHERWISE PROVIDED FOR
    • F24J2/00Use of solar heat, e.g. solar heat collectors
    • F24J2/04Solar heat collectors having working fluid conveyed through collector
    • F24J2/06Solar heat collectors having working fluid conveyed through collector having concentrating elements
    • F24J2/08Solar heat collectors having working fluid conveyed through collector having concentrating elements having lenses as concentrating elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy
    • Y02E10/43Fresnel lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F24HEATING; RANGES; VENTILATING
    • F24JPRODUCING OR USE OF HEAT NOT OTHERWISE PROVIDED FOR
    • F24J2/00Use of solar heat, e.g. solar heat collectors
    • F24J2/46Component parts, details or accessories of solar heat collectors
    • F24J2/48Component parts, details or accessories of solar heat collectors characterised by absorber material
    • F24J2/484Component parts, details or accessories of solar heat collectors characterised by absorber material of ceramic; of concrete; of natural stone
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/60Thermal-PV hybrids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F24HEATING; RANGES; VENTILATING
    • F24JPRODUCING OR USE OF HEAT NOT OTHERWISE PROVIDED FOR
    • F24J2/00Use of solar heat, e.g. solar heat collectors
    • F24J2/46Component parts, details or accessories of solar heat collectors
    • F24J2/52Arrangement of mountings or supports
    • F24J2/54Arrangement of mountings or supports specially adapted for rotary movement
    • F24J2/5403Arrangement of mountings or supports specially adapted for rotary movement with only one rotation axis

Similar Documents

Publication Publication Date Title
Lovegrove et al. Fundamental principles of concentrating solar power (CSP) systems
Gudekar et al. Cost effective design of compound parabolic collector for steam generation
Lovegrove et al. Fundamental principles of concentrating solar power systems
Babu et al. Experimental analysis on Linear Fresnel reflector solar concentrating hot water system with varying width reflectors
Abdollahpour et al. Thermodynamic model to study a solar collector for its application to Stirling engines
Avargani et al. An open-aperture partially-evacuated receiver for more uniform reflected solar flux in circular-trough reflectors: Comparative performance in air heating applications
Abbas et al. Effect of the concentration ratio on the thermal performance of a conical cavity tube receiver for a solar parabolic dish concentrator system
Malan et al. Coupled optical and thermal analysis of large aperture parabolic trough solar collector
Pawar et al. An experimental examination of a helically coiled conical cavity receiver with Scheffler dish concentrator in terms of energy and exergy performance
Mahdi et al. Central receivers design in concentrated solar thermal power plants: A review
Bharti et al. Design of solar parabolic trough collector
Mahammed et al. Theoretical study of the compound parabolic trough solar collector
Diago et al. Energy and exergy analysis of a novel gravity-fed solid particle solar receiver
Kumar Improvements in efficiency of solar parabolic trough
Lakshmipathy et al. Influence of Cavity Materials and Selective Surface Coatings on the Performance of SCC
Lakshmipathy et al. Performance analysis on working parameters of a flat-plate solar cavity collector
US10371126B2 (en) Solar power collection systems and methods thereof
Yousef et al. Development of solar thermal energy systems
Lakshmipathy et al. Selection of materials for the improvement of energy storing techniques applicable for solar cavity collector
Kumar et al. Mathematical modeling and optimization of a parabolic trough concentrator for the improvement of collection efficiency
Aichmayer Solar receiver design and verification for small scale polygeneration unit
Lakshmipathy et al. Experimental investigation work on a solar cavity collector
Bartali et al. Decarbonization of industrial processes: technologies, applications and perspectives of low-temperature solar heat (80-150 C)
Nashine et al. Thermal analysis of a compound parabolic collector
Kumar et al. Performance of cylindrical parabolic solar collector with the tracking system