Nothing Special   »   [go: up one dir, main page]

Mishra et al., 2023 - Google Patents

Self-FuseNet: data free unsupervised remote sensing image super-resolution

Mishra et al., 2023

View PDF
Document ID
5954290114882969533
Author
Mishra D
Hadar O
Publication year
Publication venue
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing

External Links

Snippet

Real-world degradations deviate from ideal degradations, as most deep learning-based scenarios involve the ideal synthesis of low-resolution (LR) counterpart images by popularly used bicubic interpolation. Moreover, supervised learning approaches rely on many high …
Continue reading at ieeexplore.ieee.org (PDF) (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10024Color image
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformation in the plane of the image, e.g. from bit-mapped to bit-mapped creating a different image
    • G06T3/40Scaling the whole image or part thereof
    • G06T3/4053Super resolution, i.e. output image resolution higher than sensor resolution
    • G06T3/4061Super resolution, i.e. output image resolution higher than sensor resolution by injecting details from a different spectral band
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20048Transform domain processing
    • G06T2207/20064Wavelet transform [DWT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20016Hierarchical, coarse-to-fine, multiscale or multiresolution image processing; Pyramid transform
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10032Satellite or aerial image; Remote sensing
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/36Image preprocessing, i.e. processing the image information without deciding about the identity of the image
    • G06K9/46Extraction of features or characteristics of the image
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20172Image enhancement details
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformation in the plane of the image, e.g. from bit-mapped to bit-mapped creating a different image
    • G06T3/40Scaling the whole image or part thereof
    • G06T3/4084Transform-based scaling, e.g. FFT domain scaling
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20112Image segmentation details
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration, e.g. from bit-mapped to bit-mapped creating a similar image
    • G06T5/007Dynamic range modification
    • G06T5/008Local, e.g. shadow enhancement
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration, e.g. from bit-mapped to bit-mapped creating a similar image
    • G06T5/001Image restoration
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/00624Recognising scenes, i.e. recognition of a whole field of perception; recognising scene-specific objects
    • G06K9/0063Recognising patterns in remote scenes, e.g. aerial images, vegetation versus urban areas
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2200/00Indexing scheme for image data processing or generation, in general
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects

Similar Documents

Publication Publication Date Title
Wang et al. Deep learning for image super-resolution: A survey
Jiang et al. Learning spatial-spectral prior for super-resolution of hyperspectral imagery
Wang et al. Hyperreconnet: Joint coded aperture optimization and image reconstruction for compressive hyperspectral imaging
Jia et al. Multiattention generative adversarial network for remote sensing image super-resolution
Fu et al. Bidirectional 3D quasi-recurrent neural network for hyperspectral image super-resolution
Huang et al. Deep hyperspectral image fusion network with iterative spatio-spectral regularization
Yue et al. Deep recursive super resolution network with Laplacian Pyramid for better agricultural pest surveillance and detection
Mishra et al. Self-FuseNet: data free unsupervised remote sensing image super-resolution
Jiang et al. Multi-scale hybrid fusion network for single image deraining
Li et al. Single-image super-resolution for remote sensing images using a deep generative adversarial network with local and global attention mechanisms
Chauhan et al. Deep learning-based single-image super-resolution: A comprehensive review
Zhang et al. Implicit neural representation learning for hyperspectral image super-resolution
Sun et al. Super resolution reconstruction of images based on interpolation and full convolutional neural network and application in medical fields
Yu et al. E-DBPN: Enhanced deep back-projection networks for remote sensing scene image superresolution
Zhu et al. Stacked U-shape networks with channel-wise attention for image super-resolution
Wang et al. Cross-UNet: dual-branch infrared and visible image fusion framework based on cross-convolution and attention mechanism
Liu et al. Research on super-resolution reconstruction of remote sensing images: A comprehensive review
Huang et al. Hybrid image enhancement with progressive laplacian enhancing unit
Qiu et al. Cross-sensor remote sensing imagery super-resolution via an edge-guided attention-based network
Qu et al. An interpretable unsupervised unrolling network for hyperspectral pansharpening
Chudasama et al. RSRGAN: computationally efficient real-world single image super-resolution using generative adversarial network
Cheng et al. StyleFuse: An unsupervised network based on style loss function for infrared and visible image fusion
Liu et al. Dual UNet low-light image enhancement network based on attention mechanism
Yao et al. Spatial-frequency dual-domain feature fusion network for low-light remote sensing image enhancement
Yuan et al. Gradient residual attention network for infrared image super-resolution