Angle et al., 2021 - Google Patents
Advances in secondary ion mass spectrometry for N-doped niobiumAngle et al., 2021
View PDF- Document ID
- 5898475694366082494
- Author
- Angle J
- Palczewski A
- Reece C
- Stevie F
- Kelley M
- Publication year
- Publication venue
- Journal of Vacuum Science & Technology B
External Links
Snippet
Accurate secondary ion mass spectroscopy measurement of nitrogen in niobium relies on the use of closely equivalent standards, made by ion implantation, to convert nitrogen signal intensity to nitrogen content by determination of relative sensitivity factors (RSFs). Accurate …
- 239000010955 niobium 0 title abstract description 26
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons
- G01N23/22—Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons by measuring secondary emission
- G01N23/225—Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons by measuring secondary emission using electron or ion microprobe or incident electron or ion beam
- G01N23/2251—Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons by measuring secondary emission using electron or ion microprobe or incident electron or ion beam with incident electron beam
- G01N23/2252—Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons by measuring secondary emission using electron or ion microprobe or incident electron or ion beam with incident electron beam and measuring excited X-rays
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/26—Electron or ion microscopes
- H01J2237/28—Scanning microscopes
- H01J2237/2813—Scanning microscopes characterised by the application
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/30—Electron or ion beam tubes for processing objects
- H01J2237/317—Processing objects on a micro-scale
- H01J2237/3174—Etching microareas
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/30—Electron-beam or ion-beam tubes for localised treatment of objects
- H01J37/305—Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching
- H01J37/3053—Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching for evaporating or etching
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/244—Detectors; Associated components or circuits therefor
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/20—Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/07—Investigating materials by wave or particle radiation secondary emission
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/20—Means for supporting or positioning the objects or the material; Means for adjusting diaphragms or lenses associated with the support
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons
- G01N23/02—Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons by transmitting the radiation through the material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/10—Different kinds of radiation or particles
- G01N2223/102—Different kinds of radiation or particles beta or electrons
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/26—Electron or ion microscopes; Electron or ion diffraction tubes
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/06—Sources
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes, e.g. for surface treatment of objects such as coating, plating, etching, sterilising or bringing about chemical reactions
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/244—Detection characterized by the detecting means
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/245—Detection characterised by the variable being measured
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Angle et al. | Advances in secondary ion mass spectrometry for N-doped niobium | |
Tuggle et al. | Secondary ion mass spectrometry for superconducting radiofrequency cavity materials | |
Angle et al. | Improved quantitation of SIMS depth profile measurements of niobium via sample holder design improvements and characterization of grain orientation effects | |
Sharp et al. | Uranium ion yields from monodisperse uranium oxide particles | |
US10054557B2 (en) | Method for measuring the mass thickness of a target sample for electron microscopy | |
Demarche et al. | Precise measurement of the differential cross section from the O16 (α, α) O16 elastic reaction at 165 and 170 between 2.4 and 6.0 MeV | |
Angle et al. | Advances in secondary ion mass spectroscopy | |
Chia et al. | Recent advances in secondary ion mass spectrometry to characterize ultralow energy ion implants | |
Jesus et al. | Excitation function and cross-sections of the reaction 19F (p, p′ γ) 19F | |
US6603119B1 (en) | Calibration method for quantitative elemental analysis | |
Bizyukov et al. | Relevance of surface roughness to tungsten sputtering and carbon implantation | |
Angle et al. | Analysis of furnace contamination on superconducting radio frequency niobium using secondary-ion mass spectrometry | |
US6519542B1 (en) | Method of testing an unknown sample with an analytical tool | |
Buyuklimanli et al. | Near-surface secondary-ion-mass-spectrometry analyses of plasma-based B ion implants in Si | |
Tomita et al. | Ultra-shallow depth profiling with secondary ion mass spectrometry | |
Bizyukov et al. | Dual beam experiment for simultaneous irradiation of surfaces with ion species of gaseous and solid-state elements | |
Downing et al. | Near-surface profiling of semiconductor materials using neutron depth profiling | |
Angle | Trace level impurity quantitation and the reduction of calibration uncertainty for secondary ion mass spectrometry analysis of niobium superconducting radio frequency materials | |
Deleuze et al. | High-energy photoelectron spectroscopy of Si3N4 thin film on Si with Cr Kα excitation | |
Wätjen et al. | Bi-implanted silicon reference material revisited: uniformity of the remaining batch | |
Yang et al. | Ultrashallow profiling using secondary ion mass spectrometry: Estimating junction depth error using mathematical deconvolution | |
Morrison | Quantifications of SIMS | |
Piel et al. | Efficient γ-ray detection in ion beam analysis | |
Radović et al. | Measurement and parametrization of proton elastic scattering cross sections for nitrogen | |
JP3719957B2 (en) | Computer program for quantitative elemental analysis |