Nothing Special   »   [go: up one dir, main page]

Rhee et al., 2007 - Google Patents

Interval type-2 fuzzy membership function design and its application to radial basis function neural networks

Rhee et al., 2007

Document ID
5766002103578695047
Author
Rhee F
Choi B
Publication year
Publication venue
2007 IEEE International Fuzzy Systems Conference

External Links

Snippet

Type-2 fuzzy sets has been shown to manage uncertainty more effectively than type-1 fuzzy sets in several pattern recognition applications. However, computing with type-2 fuzzy sets can require high computational complexity since it involves numerous embedded type-2 …
Continue reading at ieeexplore.ieee.org (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computer systems based on biological models
    • G06N3/02Computer systems based on biological models using neural network models
    • G06N3/08Learning methods
    • G06N3/082Learning methods modifying the architecture, e.g. adding or deleting nodes or connections, pruning
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computer systems based on biological models
    • G06N3/02Computer systems based on biological models using neural network models
    • G06N3/06Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
    • G06N3/063Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
    • G06N3/0635Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means using analogue means
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computer systems based on biological models
    • G06N3/02Computer systems based on biological models using neural network models
    • G06N3/04Architectures, e.g. interconnection topology
    • G06N3/0454Architectures, e.g. interconnection topology using a combination of multiple neural nets
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6267Classification techniques
    • G06K9/6268Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6217Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
    • G06K9/6232Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods
    • G06K9/6247Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods based on an approximation criterion, e.g. principal component analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computer systems utilising knowledge based models
    • G06N5/04Inference methods or devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6267Classification techniques
    • G06K9/6279Classification techniques relating to the number of classes
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N99/00Subject matter not provided for in other groups of this subclass
    • G06N99/005Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computer systems utilising knowledge based models
    • G06N5/02Knowledge representation
    • G06N5/022Knowledge engineering, knowledge acquisition
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6288Fusion techniques, i.e. combining data from various sources, e.g. sensor fusion
    • G06K9/629Fusion techniques, i.e. combining data from various sources, e.g. sensor fusion of extracted features
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/36Image preprocessing, i.e. processing the image information without deciding about the identity of the image
    • G06K9/46Extraction of features or characteristics of the image
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computer systems based on specific mathematical models
    • G06N7/02Computer systems based on specific mathematical models using fuzzy logic

Similar Documents

Publication Publication Date Title
Krohling et al. Combining prospect theory and fuzzy numbers to multi-criteria decision making
Nanda et al. Prediction of rainfall in India using Artificial Neural Network (ANN) models
Ensafi et al. Type-2 fuzzy image enhancement
Katal et al. Artificial neural network: Models, applications, and challenges
Rhee et al. Interval type-2 fuzzy membership function design and its application to radial basis function neural networks
Heywood et al. A framework for improved training of Sigma-Pi networks
US11392827B1 (en) Deeper learning from the real-time transformative correction of and reasoning from neural network outputs
Kumara et al. Use of associative memory and self-organization in conceptual design
Eiamkanitchat et al. A novel neuro-fuzzy method for linguistic feature selection and rule-based classification
Rotich Forecasting of wind speeds and directions with artificial neural networks
Kolman et al. Knowledge extraction from neural networks using the all-permutations fuzzy rule base: the LED display recognition problem
Bodyanskiy et al. Hybrid cascade neural network based on wavelet-neuron
Ritter et al. Perfect recall from noisy input patterns with a dendritic lattice associative memory
Wasukar Artificial neural network–an important asset for future computing
Jung et al. A flux reconstruction model based on an artificial neural network
Lupea Multi-Valued Neuron with a periodic activation function—New learning strategy
Ghodsi et al. Fraud detection of credit cards using neuro-fuzzy approach based on tlbo and pso algorithms
Teow Convolutional visual feature learning: a compositional subspace representation perspective
Salih et al. An optimized deep learning model for optical character recognition applications
Furusawa et al. Chaotic complex-valued bidirectional associative memory with a real-valued context part
Voskoglou Artificial Neural Networks and Genetic Algorithms: An Overview
Raheema et al. Function approximation using neural and fuzzy methods
Tsimenidis Evolutionary algorithms for fuzzy cognitive maps
Zimmermann et al. Historical consistent complex valued recurrent neural network
WO2022208632A1 (en) Inference device, inference method, learning device, learning method, and program