Mihara et al., 1998 - Google Patents
Three-dimensional sound pressure field measurement using photoelastic computer tomography methodMihara et al., 1998
- Document ID
- 5705613471965660153
- Author
- Mihara T
- Hagiwara K
- Furukawa T
- Publication year
- Publication venue
- Japanese journal of applied physics
External Links
Snippet
A photoelastic computer tomography method is developed to determine the three- dimensional sound pressure distribution of a longitudinal wave. An acoustic wave emitted from a probe gives a three-dimensional sound pressure distribution that depends on the …
- 238000005259 measurement 0 title abstract description 20
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/028—Material parameters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/22—Details, e.g. general constructional or apparatus details
- G01N29/24—Probes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/44—Processing the detected response signal, e.g. electronic circuits specially adapted therefor
- G01N29/46—Processing the detected response signal, e.g. electronic circuits specially adapted therefor by spectral analysis, e.g. Fourier analysis or wavelet analysis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/04—Analysing solids
- G01N29/07—Analysing solids by measuring propagation velocity or propagation time of acoustic waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/04—Analysing solids
- G01N29/06—Visualisation of the interior, e.g. acoustic microscopy
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/04—Wave modes and trajectories
- G01N2291/044—Internal reflections (echoes), e.g. on walls or defects
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/10—Number of transducers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons
- G01N23/02—Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons by transmitting the radiation through the material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by the preceding groups
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B17/00—Measuring arrangements characterised by the use of subsonic, sonic or ultrasonic vibrations
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01H—MEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bulavinov et al. | Sampling phased array a new technique for signal processing and ultrasonic imaging | |
US6532821B2 (en) | Apparatus and method for evaluating the physical properties of a sample using ultrasonics | |
Wolf et al. | Investigation of Lamb waves having a negative group velocity | |
Moll et al. | High resolution defect imaging in guided waves inspections by dispersion compensation and nonlinear data fusion | |
Flynn et al. | Toward utilizing full-field laser-ultrasound for practical nondestructive inspection with acoustic wavenumber spectroscopy | |
Mihara et al. | Three-dimensional sound pressure field measurement using photoelastic computer tomography method | |
Rabe et al. | Application of the total focusing method for quantitative nondestructive testing of anisotropic welds with ultrasound | |
Nam et al. | A quantitative evaluation of elastic wave in solid by stroboscopic photoelasticity | |
Choi et al. | Scattering of an ultrasonic beam from a curved interface | |
EP0222346B1 (en) | Method of measuring a sound pressure distribution in a solid body due to a ultrasonic probe by using photoelasticity | |
US10620162B2 (en) | Ultrasonic inspection methods and systems | |
Purcell et al. | Lamb wave mode spectroscopy on complex structures with amplitude-based feature detection | |
Briggs et al. | Quantitative methods in acoustic microscopy | |
JP2001343366A (en) | Crystal grain measuring method and device for metal sheet | |
JP3261827B2 (en) | Ultrasound spectrum microscope | |
Fright et al. | Reconstruction of the complex reflectance function in acoustic microscopy | |
El Kihel et al. | Vibration characteristics of the front face of an ultrasonic transducer deduced from his acoustical radiation: Review of Progress in Quantitative Nondestructive Evaluation, Williamsburg, Virginia (United States), 22–26 Jun. 1987. Vol. 7A, pp. 603–608. Edited by DD Thompson and DE Chimenti, Plenum Press, 1988 | |
JPS59122944A (en) | Probe and ultrasonic wave flaw detecting method | |
JP3379166B2 (en) | Ultrasound spectrum microscope | |
CN117665114A (en) | Ultrasonic detection method and system for limited structure | |
Nam | Directivity analysis of ultrasonic waves on surface defects using a visualization method | |
Kwun et al. | An evaluation of design parameter tolerances for producing ultrasonic transducers of reproducible performance characteristics: Review of Progress in Quantitative Nondestructive Evaluation, Williamsburg, Virginia (United States), 22–26 Jun. 1987. Vol. 7A, pp. 595–602. Edited by DD Thompson and DE Chimenti, Plenum Press, 1988 | |
Kino et al. | Acoustic Imaging | |
Borloo | PISC II parametric studies: Round robin test on the measurement of UT instrument and transducer characteristics (MITC): International Journal of Pressure Vessels and Piping, Vol. 35, pp. 207–212 (1988).(Proceedings of 5th International Seminar on Nondestructive Examination in Relation to Structural Integrity, Davos, Switzerland, 26–27 August 1987) | |
Benson et al. | Characterization of wideband ultrasonic transducers using pulse preshaping: Review of Progress in Quantitative Nondestructive Evaluation, Williamsburg, Virginia (United States), 22–26 Jun. 1987. Vol. 7A, pp. 609–616. Edited by DD Thompson and DE Chimenti, Plenum Press, 1988 |