Nothing Special   »   [go: up one dir, main page]

Liu et al., 2012 - Google Patents

Stochastic modeling of service life of concrete structures in chloride-laden environments

Liu et al., 2012

Document ID
5590931659595808676
Author
Liu Y
Shi X
Publication year
Publication venue
Journal of materials in civil engineering

External Links

Snippet

Chloride-induced rebar corrosion is a common degradation process for concrete infrastructure, which is a practical concern for cold-climate states and coastal areas. In this work, numeric models based on the FEM are utilized to study service life of concrete …
Continue reading at ascelibrary.org (other versions)

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by the preceding groups
    • G01N33/38Investigating or analysing materials by specific methods not covered by the preceding groups concrete; ceramics; glass; bricks
    • G01N33/383Concrete, cement
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/27Water resistance, e.g. waterproof or water-repellant materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/26Corrosion of reinforcement resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/06Aluminous cements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by the preceding groups
    • G01N33/48Investigating or analysing materials by specific methods not covered by the preceding groups biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/46Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/60Agents for protection against chemical, physical or biological attack

Similar Documents

Publication Publication Date Title
Liu et al. Stochastic modeling of service life of concrete structures in chloride-laden environments
Wang et al. Prediction model of long-term chloride diffusion into plain concrete considering the effect of the heterogeneity of materials exposed to marine tidal zone
Safehian et al. Assessment of service life models for determination of chloride penetration into silica fume concrete in the severe marine environmental condition
Zheng et al. Analytical solution for the chloride diffusivity of hardened cement paste
Otieno et al. Prediction of corrosion rate in reinforced concrete structures–a critical review and preliminary results
Ishida et al. Modeling of chloride diffusivity coupled with non-linear binding capacity in sound and cracked concrete
Song et al. Evaluation of chloride penetration in high performance concrete using neural network algorithm and micro pore structure
McPolin et al. New test method to obtain pH profiles due to carbonation of concretes containing supplementary cementitious materials
Lei et al. An experimental study on durability of shield segments under load and chloride environment coupling effect
Alizadeh et al. Effect of curing conditions on the service life design of RC structures in the Persian Gulf region
Spiesz et al. Development of cement-based lightweight composites–Part 2: Durability-related properties
Shakouri et al. A study of the factors affecting the surface chloride maximum phenomenon in submerged concrete samples
Duan et al. Probabilistic approach for durability design of concrete structures in marine environments
Yuan et al. Numerical model for chloride penetration into saturated concrete
Xu et al. Effect of crack self-healing on concrete diffusivity: mesoscale dynamics simulation study
Wang et al. Mesoscale modeling of chloride penetration in unsaturated concrete damaged by freeze-thaw cycling
Hussain et al. Influence of connectivity of concrete pores and associated diffusion of oxygen on corrosion of steel under high humidity
Safehian et al. Prediction of RC structure service life from field long term chloride diffusion
Sadati et al. Long-term performance of silica fume concrete in soil exposure of marine environments
Mahima et al. Influence of chloride threshold value in service life prediction of reinforced concrete structures
Conciatori et al. Statistical analysis of concrete transport properties
Wang et al. Simulation of chloride diffusion in cracked concrete with different crack patterns
Torres-Acosta et al. Electrical Resistivity as Durability Index for Concrete Structures.
Liu et al. Numerical and experimental research on the effect of rainfall on the transporting behavior of chloride ions in concrete
de Vera et al. Chloride penetration prediction in concrete through an empirical model based on constant flux diffusion