Nothing Special   »   [go: up one dir, main page]

Hinrichs et al., 1994 - Google Patents

An architecture for optimal all-to-all personalized communication

Hinrichs et al., 1994

View PDF
Document ID
5597597497313960740
Author
Hinrichs S
Kosak C
O'Hallaron D
Stricker T
Take R
Publication year
Publication venue
Proceedings of the sixth annual ACM Symposium on Parallel Algorithms and Architectures

External Links

Snippet

In all-to-all personalized communication (AAPC), every node of a parallel system sends a potentially unique packet to every other node. AAPC is an important primitive operation for modern parallel compilers, since it is used to redistribute data structures during parallel …
Continue reading at dl.acm.org (PDF) (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F15/00Digital computers in general; Data processing equipment in general
    • G06F15/16Combinations of two or more digital computers each having at least an arithmetic unit, a programme unit and a register, e.g. for a simultaneous processing of several programmes
    • G06F15/163Interprocessor communication
    • G06F15/173Interprocessor communication using an interconnection network, e.g. matrix, shuffle, pyramid, star, snowflake
    • G06F15/17356Indirect interconnection networks
    • G06F15/17368Indirect interconnection networks non hierarchical topologies
    • G06F15/17381Two dimensional, e.g. mesh, torus
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F15/00Digital computers in general; Data processing equipment in general
    • G06F15/16Combinations of two or more digital computers each having at least an arithmetic unit, a programme unit and a register, e.g. for a simultaneous processing of several programmes
    • G06F15/163Interprocessor communication
    • G06F15/173Interprocessor communication using an interconnection network, e.g. matrix, shuffle, pyramid, star, snowflake
    • G06F15/17337Direct connection machines, e.g. completely connected computers, point to point communication networks
    • G06F15/17343Direct connection machines, e.g. completely connected computers, point to point communication networks wherein the interconnection is dynamically configurable, e.g. having loosely coupled nearest neighbor architecture
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F15/00Digital computers in general; Data processing equipment in general
    • G06F15/76Architectures of general purpose stored programme computers
    • G06F15/80Architectures of general purpose stored programme computers comprising an array of processing units with common control, e.g. single instruction multiple data processors
    • G06F15/8007Architectures of general purpose stored programme computers comprising an array of processing units with common control, e.g. single instruction multiple data processors single instruction multiple data [SIMD] multiprocessors
    • G06F15/8023Two dimensional arrays, e.g. mesh, torus
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for programme control, e.g. control unit
    • G06F9/06Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
    • G06F9/46Multiprogramming arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for programme control, e.g. control unit
    • G06F9/06Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
    • G06F9/30Arrangements for executing machine-instructions, e.g. instruction decode
    • G06F9/38Concurrent instruction execution, e.g. pipeline, look ahead
    • G06F9/3885Concurrent instruction execution, e.g. pipeline, look ahead using a plurality of independent parallel functional units
    • G06F9/3889Concurrent instruction execution, e.g. pipeline, look ahead using a plurality of independent parallel functional units controlled by multiple instructions, e.g. MIMD, decoupled access or execute
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F15/00Digital computers in general; Data processing equipment in general
    • G06F15/76Architectures of general purpose stored programme computers
    • G06F15/78Architectures of general purpose stored programme computers comprising a single central processing unit
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Error detection; Error correction; Monitoring responding to the occurence of a fault, e.g. fault tolerance
    • G06F11/16Error detection or correction of the data by redundancy in hardware
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/06Deflection routing, e.g. hot-potato routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/48Routing tree calculation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/04Interdomain routing, e.g. hierarchical routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/25Routing or path finding through a switch fabric
    • H04L49/253Connections establishment or release between ports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/15Interconnection of switching modules

Similar Documents

Publication Publication Date Title
Hinrichs et al. An architecture for optimal all-to-all personalized communication
Chien et al. Planar-adaptive routing: Low-cost adaptive networks for multiprocessors
EP0733237B1 (en) Multidimensional interconnection and routing network for an mpp computer
Chien et al. Planar-adaptive routing: low-cost adaptive networks for multiprocessors
Boppana et al. Resource deadlocks and performance of wormhole multicast routing algorithms
JP3532574B2 (en) Adaptive routing mechanism for torus interconnected networks
Duato A new theory of deadlock-free adaptive routing in wormhole networks
Lee et al. A fault-tolerant communication scheme for hypercube computers
Gaughan et al. A family of fault-tolerant routing protocols for direct multiprocessor networks
Mohapatra Wormhole routing techniques for directly connected multicomputer systems
Felperin et al. Routing techniques for massively parallel communication
Boppana et al. On multicast wormhole routing in multicomputer networks
Pinkston Flexible and efficient routing based on progressive deadlock recovery
Bolding Chaotic routing: design and implementation of an adaptive multicomputer network router
Boppana et al. Fault-tolerant routing with non-adaptive wormhole algorithms in mesh networks
Ramany et al. The interaction between virtual channel flow control and adaptive routing in wormhole networks
Seydim Wormhole routing in parallel computers
Ould-Khaoua Hypergraph-based interconnection networks for large multicomputers
Hinrichs et al. Mi2D2 m
Kunde et al. (k− k) Routing on multidimensional mesh-connected arrays
Boppana et al. Fault-tolerant multicast communication for multicomputers
Rezazadeh et al. An enhanced fault-tolerant routing algorithm for mesh network-on-chip
Wu A fault-tolerant adaptive and minimal routing scheme in n-D meshes
Zakrevski Fault-tolerant wormhole message routing in computer/communication networks
Kim Planar-adaptive routing(PAR): low-cost adaptive networks for multiprocessors