Lou et al., 2012 - Google Patents
Synthesis and characterization of aluminum-doped perovskites as cathode materials for intermediate temperature solid oxide fuel cellsLou et al., 2012
View PDF- Document ID
- 5555171127307409580
- Author
- Lou Z
- Qiao J
- Yan Y
- Peng J
- Wang Z
- Jiang T
- Sun K
- Publication year
- Publication venue
- international journal of hydrogen energy
External Links
Snippet
(Ba0. 5Sr0. 5)(Fe1-xAlx) O3-δ (BSFAx, x= 0–0.2) oxides have been synthesized as novel cobalt-free cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFCs) using a sol-gel method. The BSFAx (x= 0–0.2) materials have been characterized by X-ray …
- 239000000446 fuel 0 title abstract description 25
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/50—Fuel cells
- Y02E60/52—Fuel cells characterised by type or design
- Y02E60/521—Proton Exchange Membrane Fuel Cells [PEMFC]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/50—Fuel cells
- Y02E60/52—Fuel cells characterised by type or design
- Y02E60/525—Solid Oxide Fuel Cells [SOFC]
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M8/124—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
- H01M8/1246—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
- H01M8/1266—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing bismuth oxide
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9016—Oxides, hydroxides or oxygenated metallic salts
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M2008/1293—Fuel cells with solid oxide electrolytes
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9041—Metals or alloys
- H01M4/905—Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
- H01M4/9066—Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC of metal-ceramic composites or mixtures, e.g. cermets
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M8/1213—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
- H01M8/1226—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material characterised by the supporting layer
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
- H01M2300/0071—Oxides
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/14—Fuel cells with fused electrolytes
- H01M8/144—Fuel cells with fused electrolytes characterised by the electrolyte material
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/241—Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Liang et al. | Nickel-doped BaCo0. 4Fe0. 4Zr0. 1Y0. 1O3-δ as a new high-performance cathode for both oxygen-ion and proton conducting fuel cells | |
Zhao et al. | A novel layered perovskite as symmetric electrode for direct hydrocarbon solid oxide fuel cells | |
Zhao et al. | Electrochemical performance of novel cobalt-free oxide Ba0. 5Sr0. 5Fe0. 8Cu0. 2O3− δ for solid oxide fuel cell cathode | |
Ling et al. | A cobalt-free Sm0. 5Sr0. 5Fe0. 8Cu0. 2O3− δ–Ce0. 8Sm0. 2O2− δ composite cathode for proton-conducting solid oxide fuel cells | |
Ling et al. | Investigation of cobalt-free cathode material Sm0. 5Sr0. 5Fe0. 8Cu0. 2O3− δ for intermediate temperature solid oxide fuel cell | |
Yang et al. | Cobalt-free Ba0. 5Sr0. 5Fe0. 8Cu0. 1Ti0. 1O3− δ as a bi-functional electrode material for solid oxide fuel cells | |
Yang et al. | Ba0. 9Co0. 5Fe0. 4Nb0. 1O3− δ as novel oxygen electrode for solid oxide electrolysis cells | |
Yang et al. | Improving stability and electrochemical performance of Ba0. 5Sr0. 5Co0. 2Fe0. 8O3-δ electrode for symmetrical solid oxide fuel cells by Mo doping | |
Park et al. | Tradeoff optimization of electrochemical performance and thermal expansion for Co-based cathode material for intermediate-temperature solid oxide fuel cells | |
Yang et al. | An efficient and prospective self-assembled hybrid electrocatalyst for symmetrical and reversible solid oxide cells | |
Zhu et al. | Cobalt-free perovskite BaFe0. 85Cu0. 15O3-δ cathode material for intermediate-temperature solid oxide fuel cells | |
Tao et al. | Pr0. 5Ba0. 5Co0. 7Fe0. 25Nb0. 05O3-δ as air electrode for solid oxide steam electrolysis cells | |
Xu et al. | Engineering anion defect in perovskite oxyfluoride cathodes enables proton involved oxygen reduction reaction for protonic ceramic fuel cells | |
Guo et al. | Thermal and electrochemical properties of layered perovskite PrBaCo2− xMnxO5+ δ (x= 0.1, 0.2 and 0.3) cathode materials for intermediate temperature solid oxide fuel cells | |
Fu et al. | Electrochemical Properties of La0. 5Sr0. 5Co0. 8M0. 2O3–δ (M= Mn, Fe, Ni, Cu) Perovskite Cathodes for IT‐SOFC s | |
Liu et al. | Ta-doped PrBaFe2O5+ δ double perovskite as a high-performance electrode material for symmetrical solid oxide fuel cells | |
Huang et al. | Investigation of La2NiO4+ δ-based cathodes for SDC–carbonate composite electrolyte intermediate temperature fuel cells | |
Lou et al. | Synthesis and characterization of aluminum-doped perovskites as cathode materials for intermediate temperature solid oxide fuel cells | |
Lou et al. | Preparation and electrochemical characterization of Ruddlesden–Popper oxide La 4 Ni 3 O 10 cathode for IT-SOFCs by sol–gel method | |
Peng et al. | Pr1. 8La0. 2Ni0. 74Cu0. 21Ga0. 05O4+ δ as a potential cathode material with CO2 resistance for intermediate temperature solid oxide fuel cell | |
Jo et al. | Enhancement of electrochemical performance and thermal compatibility of GdBaCo2/3Fe2/3Cu2/3O5+ δ cathode on Ce1. 9Gd0. 1O1. 95 electrolyte for IT-SOFCs | |
Guo et al. | Electrochemical evaluation of La0. 6Sr0. 4Co0. 8Fe0. 2O3− δ–La0. 9Sr0. 1Ga0. 8Mg0. 2O3− δ composite cathodes for La0. 9Sr0. 1Ga0. 8Mg0. 2O3− δ electrolyte SOFCs | |
He et al. | High performance of protonic solid oxide fuel cell with BaCo0. 7Fe0. 22Sc0. 08O3− δ electrode | |
Yu et al. | Performance optimization of SrFe0. 95Ti0. 05O3− δ cathode for intermediate temperature SOFC | |
Zhou et al. | Investigation of cobalt-free perovskite Sr2FeTi0. 75Mo0. 25O6− δ as new cathode for solid oxide fuel cells |