Nothing Special   »   [go: up one dir, main page]

Lou et al., 2012 - Google Patents

Synthesis and characterization of aluminum-doped perovskites as cathode materials for intermediate temperature solid oxide fuel cells

Lou et al., 2012

View PDF
Document ID
5555171127307409580
Author
Lou Z
Qiao J
Yan Y
Peng J
Wang Z
Jiang T
Sun K
Publication year
Publication venue
international journal of hydrogen energy

External Links

Snippet

(Ba0. 5Sr0. 5)(Fe1-xAlx) O3-δ (BSFAx, x= 0–0.2) oxides have been synthesized as novel cobalt-free cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFCs) using a sol-gel method. The BSFAx (x= 0–0.2) materials have been characterized by X-ray …
Continue reading at www.academia.edu (PDF) (other versions)

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/50Fuel cells
    • Y02E60/52Fuel cells characterised by type or design
    • Y02E60/521Proton Exchange Membrane Fuel Cells [PEMFC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/50Fuel cells
    • Y02E60/52Fuel cells characterised by type or design
    • Y02E60/525Solid Oxide Fuel Cells [SOFC]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/1266Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing bismuth oxide
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • H01M4/905Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9066Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC of metal-ceramic composites or mixtures, e.g. cermets
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • H01M8/1226Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material characterised by the supporting layer
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M8/144Fuel cells with fused electrolytes characterised by the electrolyte material
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants

Similar Documents

Publication Publication Date Title
Liang et al. Nickel-doped BaCo0. 4Fe0. 4Zr0. 1Y0. 1O3-δ as a new high-performance cathode for both oxygen-ion and proton conducting fuel cells
Zhao et al. A novel layered perovskite as symmetric electrode for direct hydrocarbon solid oxide fuel cells
Zhao et al. Electrochemical performance of novel cobalt-free oxide Ba0. 5Sr0. 5Fe0. 8Cu0. 2O3− δ for solid oxide fuel cell cathode
Ling et al. A cobalt-free Sm0. 5Sr0. 5Fe0. 8Cu0. 2O3− δ–Ce0. 8Sm0. 2O2− δ composite cathode for proton-conducting solid oxide fuel cells
Ling et al. Investigation of cobalt-free cathode material Sm0. 5Sr0. 5Fe0. 8Cu0. 2O3− δ for intermediate temperature solid oxide fuel cell
Yang et al. Cobalt-free Ba0. 5Sr0. 5Fe0. 8Cu0. 1Ti0. 1O3− δ as a bi-functional electrode material for solid oxide fuel cells
Yang et al. Ba0. 9Co0. 5Fe0. 4Nb0. 1O3− δ as novel oxygen electrode for solid oxide electrolysis cells
Yang et al. Improving stability and electrochemical performance of Ba0. 5Sr0. 5Co0. 2Fe0. 8O3-δ electrode for symmetrical solid oxide fuel cells by Mo doping
Park et al. Tradeoff optimization of electrochemical performance and thermal expansion for Co-based cathode material for intermediate-temperature solid oxide fuel cells
Yang et al. An efficient and prospective self-assembled hybrid electrocatalyst for symmetrical and reversible solid oxide cells
Zhu et al. Cobalt-free perovskite BaFe0. 85Cu0. 15O3-δ cathode material for intermediate-temperature solid oxide fuel cells
Tao et al. Pr0. 5Ba0. 5Co0. 7Fe0. 25Nb0. 05O3-δ as air electrode for solid oxide steam electrolysis cells
Xu et al. Engineering anion defect in perovskite oxyfluoride cathodes enables proton involved oxygen reduction reaction for protonic ceramic fuel cells
Guo et al. Thermal and electrochemical properties of layered perovskite PrBaCo2− xMnxO5+ δ (x= 0.1, 0.2 and 0.3) cathode materials for intermediate temperature solid oxide fuel cells
Fu et al. Electrochemical Properties of La0. 5Sr0. 5Co0. 8M0. 2O3–δ (M= Mn, Fe, Ni, Cu) Perovskite Cathodes for IT‐SOFC s
Liu et al. Ta-doped PrBaFe2O5+ δ double perovskite as a high-performance electrode material for symmetrical solid oxide fuel cells
Huang et al. Investigation of La2NiO4+ δ-based cathodes for SDC–carbonate composite electrolyte intermediate temperature fuel cells
Lou et al. Synthesis and characterization of aluminum-doped perovskites as cathode materials for intermediate temperature solid oxide fuel cells
Lou et al. Preparation and electrochemical characterization of Ruddlesden–Popper oxide La 4 Ni 3 O 10 cathode for IT-SOFCs by sol–gel method
Peng et al. Pr1. 8La0. 2Ni0. 74Cu0. 21Ga0. 05O4+ δ as a potential cathode material with CO2 resistance for intermediate temperature solid oxide fuel cell
Jo et al. Enhancement of electrochemical performance and thermal compatibility of GdBaCo2/3Fe2/3Cu2/3O5+ δ cathode on Ce1. 9Gd0. 1O1. 95 electrolyte for IT-SOFCs
Guo et al. Electrochemical evaluation of La0. 6Sr0. 4Co0. 8Fe0. 2O3− δ–La0. 9Sr0. 1Ga0. 8Mg0. 2O3− δ composite cathodes for La0. 9Sr0. 1Ga0. 8Mg0. 2O3− δ electrolyte SOFCs
He et al. High performance of protonic solid oxide fuel cell with BaCo0. 7Fe0. 22Sc0. 08O3− δ electrode
Yu et al. Performance optimization of SrFe0. 95Ti0. 05O3− δ cathode for intermediate temperature SOFC
Zhou et al. Investigation of cobalt-free perovskite Sr2FeTi0. 75Mo0. 25O6− δ as new cathode for solid oxide fuel cells