Nothing Special   »   [go: up one dir, main page]

Zhang et al., 2018 - Google Patents

ECG signal classification with deep learning for heart disease identification

Zhang et al., 2018

View PDF
Document ID
5497240453981441454
Author
Zhang W
Yu L
Ye L
Zhuang W
Ma F
Publication year
Publication venue
2018 international conference on big data and artificial intelligence (BDAI)

External Links

Snippet

Electrocardiogram (ECG) signal is widely used in medical diagnosis of heart diseases. Automatic extraction of relevant and reliable information from ECG signals has not been an easy task for computerized system. This study proposes to use 12-layer 1-d CNN to classify …
Continue reading at www.researchgate.net (PDF) (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6217Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
    • G06K9/6232Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods
    • G06K9/6247Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods based on an approximation criterion, e.g. principal component analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/04Detecting, measuring or recording bioelectric signals of the body of parts thereof
    • A61B5/0402Electrocardiography, i.e. ECG
    • A61B5/0452Detecting specific parameters of the electrocardiograph cycle
    • A61B5/04525Detecting specific parameters of the electrocardiograph cycle by template matching
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/04Detecting, measuring or recording bioelectric signals of the body of parts thereof
    • A61B5/0402Electrocardiography, i.e. ECG
    • A61B5/0452Detecting specific parameters of the electrocardiograph cycle
    • A61B5/046Detecting fibrillation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • A61B5/7267Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems involving training the classification device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7239Details of waveform analysis using differentiation including higher order derivatives
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6267Classification techniques
    • G06K9/6268Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/04Detecting, measuring or recording bioelectric signals of the body of parts thereof
    • A61B5/0476Electroencephalography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/04Detecting, measuring or recording bioelectric signals of the body of parts thereof
    • A61B5/04012Analysis of electro-cardiograms, electro-encephalograms, electro-myograms
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/00496Recognising patterns in signals and combinations thereof
    • G06K9/00536Classification; Matching
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/36Image preprocessing, i.e. processing the image information without deciding about the identity of the image
    • G06K9/46Extraction of features or characteristics of the image
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/00221Acquiring or recognising human faces, facial parts, facial sketches, facial expressions
    • G06K9/00268Feature extraction; Face representation
    • G06K9/00281Local features and components; Facial parts ; Occluding parts, e.g. glasses; Geometrical relationships
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • A61B5/4076Diagnosing or monitoring particular conditions of the nervous system

Similar Documents

Publication Publication Date Title
Zhang et al. ECG signal classification with deep learning for heart disease identification
CN111449645B (en) Intelligent classification and identification method for electrocardiogram and heartbeat
Oh et al. Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats
Li et al. Classification of ECG signals based on 1D convolution neural network
Alquran et al. ECG classification using higher order spectral estimation and deep learning techniques
Yang Multiscale recurrence quantification analysis of spatial cardiac vectorcardiogram signals
Wan et al. Heartbeat classification algorithm based on one-dimensional convolution neural network
Vijayavanan et al. Automatic classification of ECG signal for heart disease diagnosis using morphological features
Singh et al. Efficient wavelet families for ECG classification using neural classifiers
Gawande et al. Heart diseases classification using convolutional neural network
Wu et al. A novel features learning method for ECG arrhythmias using deep belief networks
Kshirsagar et al. Classification of ECG-signals using artificial neural networks
Deshmane et al. ECG based biometric human identification using convolutional neural network in smart health applications
Khan et al. Electrocardiogram heartbeat classification using convolutional neural networks for the detection of cardiac Arrhythmia
Upasani et al. Automated ECG Diagnosis
Alim et al. Application of machine learning on ecg signal classification using morphological features
Kishore et al. Cardiac Analysis and Classification of ECG Signal using GA and NN
Oliveira et al. A novel arrhythmia classification method based on convolutional neural networks interpretation of electrocardiogram images
Gharaviri et al. Comparison of neural network, ANFIS, and SVM classifiers for PVC arrhythmia detection
Shi et al. Automated heartbeat classification based on convolutional neural network with multiple kernel sizes
Sarma et al. Classification of ECG using some novel features
Jiang et al. Heartbeat classification system based on modified stacked denoising autoencoders and neural networks
Kumar et al. Covering rough set-based classification for cardiac arrhythmia
Ingole et al. Electrocardiogram (ECG) signals feature extraction and classification using various signal analysis techniques
Chashmi et al. An automatic ECG arrhythmia diagnosis system using support vector machines optimised with GOA and entropy-based feature selection procedure