Zhang et al., 2018 - Google Patents
ECG signal classification with deep learning for heart disease identificationZhang et al., 2018
View PDF- Document ID
- 5497240453981441454
- Author
- Zhang W
- Yu L
- Ye L
- Zhuang W
- Ma F
- Publication year
- Publication venue
- 2018 international conference on big data and artificial intelligence (BDAI)
External Links
Snippet
Electrocardiogram (ECG) signal is widely used in medical diagnosis of heart diseases. Automatic extraction of relevant and reliable information from ECG signals has not been an easy task for computerized system. This study proposes to use 12-layer 1-d CNN to classify …
- 201000010238 heart disease 0 title abstract description 13
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06K9/6232—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods
- G06K9/6247—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods based on an approximation criterion, e.g. principal component analysis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/04—Detecting, measuring or recording bioelectric signals of the body of parts thereof
- A61B5/0402—Electrocardiography, i.e. ECG
- A61B5/0452—Detecting specific parameters of the electrocardiograph cycle
- A61B5/04525—Detecting specific parameters of the electrocardiograph cycle by template matching
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/04—Detecting, measuring or recording bioelectric signals of the body of parts thereof
- A61B5/0402—Electrocardiography, i.e. ECG
- A61B5/0452—Detecting specific parameters of the electrocardiograph cycle
- A61B5/046—Detecting fibrillation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7264—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
- A61B5/7267—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems involving training the classification device
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7239—Details of waveform analysis using differentiation including higher order derivatives
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6268—Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/04—Detecting, measuring or recording bioelectric signals of the body of parts thereof
- A61B5/0476—Electroencephalography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/04—Detecting, measuring or recording bioelectric signals of the body of parts thereof
- A61B5/04012—Analysis of electro-cardiograms, electro-encephalograms, electro-myograms
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00496—Recognising patterns in signals and combinations thereof
- G06K9/00536—Classification; Matching
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/36—Image preprocessing, i.e. processing the image information without deciding about the identity of the image
- G06K9/46—Extraction of features or characteristics of the image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00221—Acquiring or recognising human faces, facial parts, facial sketches, facial expressions
- G06K9/00268—Feature extraction; Face representation
- G06K9/00281—Local features and components; Facial parts ; Occluding parts, e.g. glasses; Geometrical relationships
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/40—Detecting, measuring or recording for evaluating the nervous system
- A61B5/4076—Diagnosing or monitoring particular conditions of the nervous system
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | ECG signal classification with deep learning for heart disease identification | |
CN111449645B (en) | Intelligent classification and identification method for electrocardiogram and heartbeat | |
Oh et al. | Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats | |
Li et al. | Classification of ECG signals based on 1D convolution neural network | |
Alquran et al. | ECG classification using higher order spectral estimation and deep learning techniques | |
Yang | Multiscale recurrence quantification analysis of spatial cardiac vectorcardiogram signals | |
Wan et al. | Heartbeat classification algorithm based on one-dimensional convolution neural network | |
Vijayavanan et al. | Automatic classification of ECG signal for heart disease diagnosis using morphological features | |
Singh et al. | Efficient wavelet families for ECG classification using neural classifiers | |
Gawande et al. | Heart diseases classification using convolutional neural network | |
Wu et al. | A novel features learning method for ECG arrhythmias using deep belief networks | |
Kshirsagar et al. | Classification of ECG-signals using artificial neural networks | |
Deshmane et al. | ECG based biometric human identification using convolutional neural network in smart health applications | |
Khan et al. | Electrocardiogram heartbeat classification using convolutional neural networks for the detection of cardiac Arrhythmia | |
Upasani et al. | Automated ECG Diagnosis | |
Alim et al. | Application of machine learning on ecg signal classification using morphological features | |
Kishore et al. | Cardiac Analysis and Classification of ECG Signal using GA and NN | |
Oliveira et al. | A novel arrhythmia classification method based on convolutional neural networks interpretation of electrocardiogram images | |
Gharaviri et al. | Comparison of neural network, ANFIS, and SVM classifiers for PVC arrhythmia detection | |
Shi et al. | Automated heartbeat classification based on convolutional neural network with multiple kernel sizes | |
Sarma et al. | Classification of ECG using some novel features | |
Jiang et al. | Heartbeat classification system based on modified stacked denoising autoencoders and neural networks | |
Kumar et al. | Covering rough set-based classification for cardiac arrhythmia | |
Ingole et al. | Electrocardiogram (ECG) signals feature extraction and classification using various signal analysis techniques | |
Chashmi et al. | An automatic ECG arrhythmia diagnosis system using support vector machines optimised with GOA and entropy-based feature selection procedure |