Jiang et al., 2019 - Google Patents
An LSTM-CNN attention approach for aspect-level sentiment classificationJiang et al., 2019
View PDF- Document ID
- 5432535901725871358
- Author
- Jiang M
- Zhang W
- Zhang M
- Wu J
- Wen T
- Publication year
- Publication venue
- Journal of Computational Methods in Sciences and Engineering
External Links
Snippet
Opinions in complex reviews often vary on different aspects of a thing. Coarse-grained sentiment analysis on a sentence can't capture the sentiment polarity of it accurately. Therefore, aspect-level sentiment classification is a better choice because it is a fine-grained …
- 230000003935 attention 0 title abstract description 42
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/3061—Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
- G06F17/30634—Querying
- G06F17/30657—Query processing
- G06F17/30675—Query execution
- G06F17/30684—Query execution using natural language analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/20—Handling natural language data
- G06F17/27—Automatic analysis, e.g. parsing
- G06F17/2765—Recognition
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/20—Handling natural language data
- G06F17/21—Text processing
- G06F17/22—Manipulating or registering by use of codes, e.g. in sequence of text characters
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/20—Handling natural language data
- G06F17/27—Automatic analysis, e.g. parsing
- G06F17/2705—Parsing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/3061—Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
- G06F17/30613—Indexing
- G06F17/30619—Indexing indexing structures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30861—Retrieval from the Internet, e.g. browsers
- G06F17/30864—Retrieval from the Internet, e.g. browsers by querying, e.g. search engines or meta-search engines, crawling techniques, push systems
- G06F17/30867—Retrieval from the Internet, e.g. browsers by querying, e.g. search engines or meta-search engines, crawling techniques, push systems with filtering and personalisation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/3061—Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
- G06F17/30705—Clustering or classification
- G06F17/3071—Clustering or classification including class or cluster creation or modification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30943—Information retrieval; Database structures therefor; File system structures therefor details of database functions independent of the retrieved data type
- G06F17/30946—Information retrieval; Database structures therefor; File system structures therefor details of database functions independent of the retrieved data type indexing structures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/20—Handling natural language data
- G06F17/21—Text processing
- G06F17/24—Editing, e.g. insert/delete
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30286—Information retrieval; Database structures therefor; File system structures therefor in structured data stores
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N99/00—Subject matter not provided for in other groups of this subclass
- G06N99/005—Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computer systems utilising knowledge based models
- G06N5/02—Knowledge representation
- G06N5/022—Knowledge engineering, knowledge acquisition
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N7/00—Computer systems based on specific mathematical models
- G06N7/005—Probabilistic networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06Q—DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kula et al. | Sentiment analysis for fake news detection by means of neural networks | |
Wang et al. | Learning latent opinions for aspect-level sentiment classification | |
Tang et al. | Deep learning for sentiment analysis: successful approaches and future challenges | |
Ay Karakuş et al. | Evaluating deep learning models for sentiment classification | |
Jiang et al. | An LSTM-CNN attention approach for aspect-level sentiment classification | |
CN110427623A (en) | Semi-structured document Knowledge Extraction Method, device, electronic equipment and storage medium | |
Bekamiri et al. | Patentsberta: A deep nlp based hybrid model for patent distance and classification using augmented sbert | |
Nagamanjula et al. | A novel framework based on bi-objective optimization and LAN2FIS for Twitter sentiment analysis | |
He et al. | A survey on recent advances in sequence labeling from deep learning models | |
Tang et al. | Deep learning in sentiment analysis | |
Simran et al. | Deep learning approach for intelligent named entity recognition of cyber security | |
Logeswaran et al. | Sentence ordering using recurrent neural networks | |
Shekhar et al. | An effective cybernated word embedding system for analysis and language identification in code-mixed social media text | |
Wong et al. | iSentenizer‐μ: Multilingual Sentence Boundary Detection Model | |
Wang et al. | A deep context-wise method for coreference detection in natural language requirements | |
Himabindu et al. | A self-attention hybrid emoji prediction model for code-mixed language:(Hinglish) | |
Arslan | Application of BiLSTM-CRF model with different embeddings for product name extraction in unstructured Turkish text | |
Mahmoud et al. | Hybrid attention-based approach for arabic paraphrase detection | |
Belguith et al. | Aspect Level Sentiment Analysis Based on Deep Learning and Ontologies | |
Cong et al. | Chinese medical nested named entity recognition model based on feature fusion and bidirectional lattice embedding graph | |
Chavali et al. | A study on named entity recognition with different word embeddings on gmb dataset using deep learning pipelines | |
Suresh Kumar et al. | Sentiment lexicon for cross-domain adaptation with multi-domain dataset in Indian languages enhanced with BERT classification model | |
Zhu et al. | A named entity recognition model based on ensemble learning | |
Zhang et al. | An attentive memory network integrated with aspect dependency for document-level multi-aspect sentiment classification | |
Sun et al. | Entity disambiguation with decomposable neural networks |