Nothing Special   »   [go: up one dir, main page]

Rico et al., 2015 - Google Patents

Adjustment recommendations of a conoscopic holography sensor for a reliable scanning of surfaces with roughness grades obtained by different processes

Rico et al., 2015

Document ID
5429147973162135472
Author
Rico J
Valino G
Fernández P
Zapico P
Blanco D
Mateos S
Publication year
Publication venue
Precision Engineering

External Links

Snippet

Conoscopic holography (CH) is a non-contact interferometric technique used in surface digitizing. Like other laser techniques it is influenced by different factors such as surface reflectance, material, colour or even speckle noise caused by roughness. In this work, a CH …
Continue reading at www.sciencedirect.com (other versions)

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical means
    • G01B11/02Measuring arrangements characterised by the use of optical means for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical means for measuring length, width or thickness for measuring thickness, e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical means for measuring length, width or thickness for measuring thickness, e.g. of sheet material of coating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical means
    • G01B11/02Measuring arrangements characterised by the use of optical means for measuring length, width or thickness
    • G01B11/026Measuring arrangements characterised by the use of optical means for measuring length, width or thickness by measuring distance between sensor and object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical means
    • G01B11/24Measuring arrangements characterised by the use of optical means for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical means for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical means
    • G01B11/24Measuring arrangements characterised by the use of optical means for measuring contours or curvatures
    • G01B11/2433Measuring arrangements characterised by the use of optical means for measuring contours or curvatures for measuring outlines by shadow casting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical means
    • G01B11/24Measuring arrangements characterised by the use of optical means for measuring contours or curvatures
    • G01B11/2441Measuring arrangements characterised by the use of optical means for measuring contours or curvatures using interferometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical means
    • G01B11/30Measuring arrangements characterised by the use of optical means for measuring roughness or irregularity of surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof in so far as they are not adapted to particular types of measuring means of the preceding groups
    • G01B21/02Measuring arrangements or details thereof in so far as they are not adapted to particular types of measuring means of the preceding groups for measuring length, width, or thickness
    • G01B21/04Measuring arrangements or details thereof in so far as they are not adapted to particular types of measuring means of the preceding groups for measuring length, width, or thickness by measuring coordinates of points
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Instruments as specified in the subgroups and characterised by the use of optical measuring means
    • G01B9/02Interferometers for determining dimensional properties of, or relations between, measurement objects
    • G01B9/02001Interferometers for determining dimensional properties of, or relations between, measurement objects characterised by manipulating or generating specific radiation properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical means
    • G01B11/14Measuring arrangements characterised by the use of optical means for measuring distance or clearance between spaced objects or spaced apertures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B3/00Instruments as specified in the subgroups and characterised by the use of mechanical measuring means
    • G01B3/20Slide gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/40Caliper-like sensors
    • G01B2210/44Caliper-like sensors with detectors on both sides of the object to be measured
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic means

Similar Documents

Publication Publication Date Title
Bešić et al. Accuracy improvement of laser line scanning for feature measurements on CMM
Danzl et al. Focus variation–a new technology for high resolution optical 3D surface metrology
Mekid et al. In-process out-of-roundness measurement probe for turned workpieces
CN109163672A (en) A kind of microscopic appearance measurement method based on white light interference zero optical path difference position picking algorithm
Kapłonek et al. Laser methods based on an analysis of scattered light for automated, in-process inspection of machined surfaces: A review
Rico et al. Adjustment recommendations of a conoscopic holography sensor for a reliable scanning of surfaces with roughness grades obtained by different processes
Grochalski et al. The optical aspect of errors in measurements of surface asperities using the optical profilometry method
US20140211191A1 (en) Optical individual-point measurement
Cuesta et al. Influence of roughness on surface scanning by means of a laser stripe system
Daffara et al. Multiscale roughness analysis by microprofilometry based on conoscopic holography: A new tool for treatment monitoring in highly reflective metal artworks
Zechel et al. Optical coherence tomography for non-destructive testing
Beraldin et al. Characterization of triangulation-based 3D imaging systems using certified artifacts
Alam et al. Limitation of a line-of-light online paper surface measurement system
Marani et al. A 3D vision system for high resolution surface reconstruction
JP6388722B2 (en) Interferometric non-contact optical probe and measurement
Patiño et al. A Gaussian filtering method to reduce directionality on high-density point clouds digitized by a conoscopic holography sensor
WO2020135891A1 (en) Laser parallelism detector
Zhu et al. A method for measuring the guideway straightness error based on polarized interference principle
Zapico et al. On-machine non-contact roughness verification system based on Conoscopic holography
Blanco et al. Influence of part material and sensor adjustment on the quality of digitised point-clouds using conoscopic holography
Elmas et al. Analysis of profile measurement techniques employed to surfaces planed by an active machining system
Frade et al. In situ 3D profilometry of rough objects with a lateral shearing interferometry range finder
Valino et al. Measurement and correction of the slope angle of flat surfaces digitized by a conoscopic holography system
CN205562427U (en) Optical element surface defect detecting device of reflection -type synthetic aperture digital holographic art
Zhou et al. Performance evaluation of laser line scanner for in-process inspection of 3D geometries