Lee et al., 2014 - Google Patents
Sulfur infiltrated activated carbon cathodes for lithium sulfur cells: the combined effects of pore size distribution and electrolyte molarityLee et al., 2014
- Document ID
- 5353744650569600151
- Author
- Lee J
- Zhao Y
- Kim H
- Cho W
- Yushin G
- Publication year
- Publication venue
- Journal of Power Sources
External Links
Snippet
In this paper, we adopted three different commercial activated carbon samples (ACs) having different particle size, specific surface area and pore size to make sulfur–carbon (S-AC) nanocomposites for rechargeable lithium sulfur batteries. The effect of the physical …
- OKTJSMMVPCPJKN-UHFFFAOYSA-N carbon   [C] 0 title abstract description 82
Classifications
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
- H01M4/581—Chalcogenides or intercalation compounds thereof
- H01M4/5815—Sulfides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage
- Y02E60/12—Battery technology
- Y02E60/122—Lithium-ion batteries
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
- H01M4/5825—Oxygenated metallic slats or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/136—Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage
- Y02E60/13—Ultracapacitors, supercapacitors, double-layer capacitors
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/50—Fuel cells
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lee et al. | Sulfur infiltrated activated carbon cathodes for lithium sulfur cells: the combined effects of pore size distribution and electrolyte molarity | |
Wang et al. | Dual-salt-additive electrolyte enables high-voltage lithium metal full batteries capable of fast-charging ability | |
Kaiser et al. | Lithium sulfide-based cathode for lithium-ion/sulfur battery: recent progress and challenges | |
Rana et al. | Review on areal capacities and long-term cycling performances of lithium sulfur battery at high sulfur loading | |
Lei et al. | TiO2 feather duster as effective polysulfides restrictor for enhanced electrochemical kinetics in lithium–sulfur batteries | |
Balach et al. | Improved cycling stability of lithium–sulfur batteries using a polypropylene-supported nitrogen-doped mesoporous carbon hybrid separator as polysulfide adsorbent | |
Ding et al. | Encapsulating sulfur into hierarchically ordered porous carbon as a high‐performance cathode for lithium–sulfur batteries | |
Zheng et al. | Copper‐stabilized sulfur‐microporous carbon cathodes for Li–S batteries | |
Guo et al. | Interdispersed amorphous MnOx–carbon nanocomposites with superior electrochemical performance as lithium‐storage material | |
Yin et al. | Lithium–sulfur batteries: electrochemistry, materials, and prospects | |
Lee et al. | Micro‐and mesoporous carbide‐derived carbon–selenium cathodes for high‐performance lithium selenium batteries | |
Li et al. | Constructing three-dimensional structured V2O5/conductive polymer composite with fast ion/electron transfer kinetics for aqueous zinc-ion battery | |
Meng et al. | Vapor-phase atomic-controllable growth of amorphous Li2S for high-performance lithium–sulfur batteries | |
Zu et al. | Highly reversible Li/dissolved polysulfide batteries with binder-free carbon nanofiber electrodes | |
Wu et al. | Solution-Based Processing of Graphene-Li 2 S Composite Cathodes for Lithium-Ion and Lithium-Sulfur Batteries. | |
Chen et al. | Graphene-wrapped sulfur/metal organic framework-derived microporous carbon composite for lithium sulfur batteries | |
Chen et al. | Ultrasmall Fe3O4 nanoparticle/MoS2 nanosheet composites with superior performances for lithium ion batteries | |
Zhan et al. | Using Li2S to compensate for the loss of active lithium in Li-ion batteries | |
Liu et al. | High performance Li–S battery based on amorphous NiS 2 as the host material for the S cathode | |
Weret et al. | Strategies towards High Performance Lithium‐Sulfur Batteries | |
Gu et al. | Carbon disulfide cosolvent electrolytes for high-performance lithium sulfur batteries | |
Zhao et al. | Lithium/sulfur secondary batteries: a review | |
Wang et al. | Mesoporous β-MnO2/sulfur composite as cathode material for Li–S batteries | |
Kaiser et al. | A methodical approach for fabrication of binder-free Li2S-C composite cathode with high loading of active material for Li-S battery | |
Huangfu et al. | Facile fabrication of permselective g-C3N4 separator for improved lithium-sulfur batteries |