Liu et al., 2001 - Google Patents
Blue-light-emitting fluorene-based polymers with tunable electronic propertiesLiu et al., 2001
View PDF- Document ID
- 5356293576573615366
- Author
- Liu B
- Yu W
- Lai Y
- Huang W
- Publication year
- Publication venue
- Chemistry of materials
External Links
Snippet
A series of soluble alternating polyfluorene copolymers with different main chain structures and those of the same main chain structure polyfluorene-co-alt-phenylene with different functional groups attached at the 2-and/or 5-positions of the phenylene ring were …
- 229920000642 polymer 0 title abstract description 276
Classifications
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/0032—Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
- H01L51/005—Macromolecular systems with low molecular weight, e.g. cyanine dyes, coumarine dyes, tetrathiafulvalene
- H01L51/0062—Macromolecular systems with low molecular weight, e.g. cyanine dyes, coumarine dyes, tetrathiafulvalene aromatic compounds comprising a hetero atom, e.g.: N,P,S
- H01L51/0071—Polycyclic condensed heteroaromatic hydrocarbons
- H01L51/0072—Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ringsystem, e.g. phenanthroline, carbazole
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/0032—Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
- H01L51/0034—Organic polymers or oligomers
- H01L51/0035—Organic polymers or oligomers comprising aromatic, heteroaromatic, or arrylic chains, e.g. polyaniline, polyphenylene, polyphenylene vinylene
- H01L51/0038—Poly-phenylenevinylene and derivatives
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/0032—Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
- H01L51/005—Macromolecular systems with low molecular weight, e.g. cyanine dyes, coumarine dyes, tetrathiafulvalene
- H01L51/0059—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
- H01L51/0061—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/0032—Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
- H01L51/005—Macromolecular systems with low molecular weight, e.g. cyanine dyes, coumarine dyes, tetrathiafulvalene
- H01L51/0052—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/0032—Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
- H01L51/0077—Coordination compounds, e.g. porphyrin
- H01L51/0084—Transition metal complexes, e.g. Ru(II)polypyridine complexes
- H01L51/0085—Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising Iridium
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/50—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes [OLED] or polymer light emitting devices [PLED];
- H01L51/5012—Electroluminescent [EL] layer
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/14—Macromolecular compounds
- C09K2211/1441—Heterocyclic
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G61/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G61/12—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
- C08G61/122—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
- C08G61/123—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2251/00—Indexing scheme relating to organic semiconductor devices covered by group H01L51/00
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Liu et al. | Blue-light-emitting fluorene-based polymers with tunable electronic properties | |
Wu et al. | Highly efficient light-emitting diodes based on fluorene copolymer consisting of triarylamine units in the main chain and oxadiazole pendent groups | |
Li et al. | Synthesis and properties of random and alternating fluorene/carbazole copolymers for use in blue light-emitting devices | |
Cho et al. | Synthesis and color tuning of new fluorene-based copolymers | |
Yang et al. | High-efficiency saturated red emitting polymers derived from fluorene and naphthoselenadiazole | |
Lu et al. | Pure deep blue light-emitting diodes from alternating fluorene/carbazole copolymers by using suitable hole-blocking materials | |
Liu et al. | Synthesis, Characterization, and Structure− Property Relationship of Novel Fluorene− Thiophene-Based Conjugated Copolymers | |
Wu et al. | Novel oxadiazole-containing polyfluorene with efficient blue electroluminescence | |
Huang et al. | Novel electroluminescent polymers derived from carbazole and benzothiadiazole | |
Peng et al. | Synthesis and characterization of new red-emitting polyfluorene derivatives containing electron-deficient 2-pyran-4-ylidene− malononitrile moieties | |
Kulkarni et al. | Quinoxaline-containing polyfluorenes: synthesis, photophysics, and stable blue electroluminescence | |
Ranger et al. | New well-defined poly (2, 7-fluorene) derivatives: photoluminescence and base doping | |
Xia et al. | Decreased aggregation phenomena in polyfluorenes by introducing carbazole copolymer units | |
Liu et al. | Effect of cyano substituents on electron affinity and electron-transporting properties of conjugated polymers | |
Zeng et al. | Spectral and thermal spectral stability study for fluorene-based conjugated polymers | |
Morin et al. | 2, 7-Carbazole-based conjugated polymers for blue, green, and red light emission | |
Sung et al. | Novel alternating fluorene-based conjugated polymers containing oxadiazole pendants with various terminal groups | |
Chou et al. | Synthesis and characterization of dendronized polyfluorenes | |
Wong et al. | Synthesis and characterization of blue-light-emitting alternating copolymers of 9, 9-dihexylfluorene and 9-arylcarbazole | |
Aubert et al. | Copolymers of 3, 4-ethylenedioxythiophene and of pyridine alternated with fluorene or phenylene units: Synthesis, optical properties, and devices | |
Zhou et al. | Effect of Fluorenone Units on the Property of Polyfluorene and Oligofluorene Derivatives: Synthesis, Structure− Properties Relationship, and Electroluminescence | |
Zhao et al. | Zigzag molecules from pyrene-modified carbazole oligomers: synthesis, characterization, and application in OLEDs | |
Intemann et al. | Altering the conjugation pathway for improved performance of benzobisoxazole-based polymer guest emitters in polymer light-emitting diodes | |
Karastatiris et al. | Synthesis, photophysics, and electroluminescence of new quinoxaline-containing poly (p-phenylenevinylene) s | |
Su et al. | Tuning wavelength: Synthesis and characterization of spiro-DPVF-containing polyfluorenes and applications in organic light-emitting diodes |