Luo et al., 2019 - Google Patents
Systematic evaluation of transferrin-modified porous silicon nanoparticles for targeted delivery of doxorubicin to glioblastomaLuo et al., 2019
- Document ID
- 5196267538436777309
- Author
- Luo M
- Lewik G
- Ratcliffe J
- Choi C
- Mäkilä E
- Tong W
- Voelcker N
- Publication year
- Publication venue
- ACS applied materials & interfaces
External Links
Snippet
There is a dire need to develop more effective therapeutics to combat brain cancer such as glioblastoma multiforme (GBM). An ideal treatment is expected to target deliver chemotherapeutics to glioma cells across the blood–brain barrier (BBB). The …
- 229910021426 porous silicon 0 title abstract description 62
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/51—Nanocapsules; Nanoparticles
- A61K9/5107—Excipients; Inactive ingredients
- A61K9/513—Organic macromolecular compounds; Dendrimers
- A61K9/5146—Organic macromolecular compounds; Dendrimers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyamines, polyanhydrides
- A61K9/5153—Polyesters, e.g. poly(lactide-co-glycolide)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives
- A61K47/48—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates
- A61K47/48769—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates the conjugate being characterized by a special physical or galenical form
- A61K47/48853—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates the conjugate being characterized by a special physical or galenical form the form being a particulate, powder, adsorbate, bead, sphere
- A61K47/48876—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates the conjugate being characterized by a special physical or galenical form the form being a particulate, powder, adsorbate, bead, sphere the form being a solid micro- or nanoparticle having no hollow or gas-filled core
- A61K47/48884—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates the conjugate being characterized by a special physical or galenical form the form being a particulate, powder, adsorbate, bead, sphere the form being a solid micro- or nanoparticle having no hollow or gas-filled core the form being a nanoparticle, e.g. an immuno-nanoparticle
- A61K47/48892—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates the conjugate being characterized by a special physical or galenical form the form being a particulate, powder, adsorbate, bead, sphere the form being a solid micro- or nanoparticle having no hollow or gas-filled core the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives
- A61K47/48—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates
- A61K47/48769—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates the conjugate being characterized by a special physical or galenical form
- A61K47/48853—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates the conjugate being characterized by a special physical or galenical form the form being a particulate, powder, adsorbate, bead, sphere
- A61K47/48861—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates the conjugate being characterized by a special physical or galenical form the form being a particulate, powder, adsorbate, bead, sphere the form being an inorganic particle, e.g. a ceramic particle, silica particle, ferrite, synsorb
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives
- A61K47/48—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates
- A61K47/48769—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates the conjugate being characterized by a special physical or galenical form
- A61K47/48792—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates the conjugate being characterized by a special physical or galenical form the form being a colloid, emulsion, i.e. having at least a dispersed/continuous oil phase and a dispersed/continuous aqueous phase, dispersion or suspension
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
- A61K9/107—Emulsions; Emulsion preconcentrates; Micelles
- A61K9/1075—Microemulsions or submicron emulsions; Preconcentrates or solids thereof; Micelles, e.g. made of phospholipids or block copolymers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives
- A61K47/48—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates
- A61K47/48007—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates the pharmacologically- or therapeutically-active agent being covalently bound or complexed to a modifying agent
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
- A61K9/127—Liposomes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/337—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having four-membered rings, e.g. taxol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Luo et al. | Systematic evaluation of transferrin-modified porous silicon nanoparticles for targeted delivery of doxorubicin to glioblastoma | |
Ge et al. | Fluorinated α-helical polypeptides synchronize mucus permeation and cell penetration toward highly efficient pulmonary siRNA delivery against acute lung injury | |
Gao et al. | RGD and interleukin-13 peptide functionalized nanoparticles for enhanced glioblastoma cells and neovasculature dual targeting delivery and elevated tumor penetration | |
Fang et al. | Temozolomide nanoparticles for targeted glioblastoma therapy | |
Gao et al. | Erythrocyte membrane-wrapped pH sensitive polymeric nanoparticles for non-small cell lung cancer therapy | |
Wang et al. | Epirubicin-adsorbed nanodiamonds kill chemoresistant hepatic cancer stem cells | |
Cun et al. | A novel strategy through combining iRGD peptide with tumor-microenvironment-responsive and multistage nanoparticles for deep tumor penetration | |
Mo et al. | Tailoring particle size of mesoporous silica nanosystem to antagonize glioblastoma and overcome blood–brain barrier | |
Lin et al. | Inorganic nanomaterial‐mediated gene therapy in combination with other antitumor treatment modalities | |
Yao et al. | Improving tumor specificity and anticancer activity of dasatinib by dual-targeted polymeric micelles | |
Meng et al. | Engineered design of mesoporous silica nanoparticles to deliver doxorubicin and P-glycoprotein siRNA to overcome drug resistance in a cancer cell line | |
Reuter et al. | Targeted PRINT hydrogels: the role of nanoparticle size and ligand density on cell association, biodistribution, and tumor accumulation | |
Vivek et al. | Multifunctional HER2-antibody conjugated polymeric nanocarrier-based drug delivery system for multi-drug-resistant breast cancer therapy | |
Zhang et al. | MnO2-based nanoplatform serves as drug vehicle and MRI contrast agent for cancer theranostics | |
Wicki et al. | Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications | |
Bi et al. | T7 peptide-functionalized PEG-PLGA micelles loaded with carmustine for targeting therapy of glioma | |
Tang et al. | Synthesis and biological response of size-specific, monodisperse drug–silica nanoconjugates | |
Wu et al. | Nucleolin targeting AS1411 modified protein nanoparticle for antitumor drugs delivery | |
Ku et al. | Tumor‐targeting multifunctional nanoparticles for siRNA delivery: Recent advances in cancer therapy | |
Ashley et al. | Delivery of small interfering RNA by peptide-targeted mesoporous silica nanoparticle-supported lipid bilayers | |
Shi et al. | Self-assembled targeted nanoparticles: evolution of technologies and bench to bedside translation | |
Pan et al. | Nuclear-targeted drug delivery of TAT peptide-conjugated monodisperse mesoporous silica nanoparticles | |
Ashley et al. | Cell-specific delivery of diverse cargos by bacteriophage MS2 virus-like particles | |
Zhang et al. | Receptor-mediated surface charge inversion platform based on porous silicon nanoparticles for efficient cancer cell recognition and combination therapy | |
Pan et al. | Tumor-targeting polycaprolactone nanoparticles with codelivery of paclitaxel and IR780 for combinational therapy of drug-resistant ovarian cancer |