Dorafshan et al., 2018 - Google Patents
Comparison of deep convolutional neural networks and edge detectors for image-based crack detection in concreteDorafshan et al., 2018
View PDF- Document ID
- 491417286238424610
- Author
- Dorafshan S
- Thomas R
- Maguire M
- Publication year
- Publication venue
- Construction and Building Materials
External Links
Snippet
This paper compares the performance of common edge detectors and deep convolutional neural networks (DCNN) for image-based crack detection in concrete structures. A dataset of 19 high definition images (3420 sub-images, 319 with cracks and 3101 without) of concrete …
- 238000001514 detection method 0 title abstract description 84
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6268—Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/36—Image preprocessing, i.e. processing the image information without deciding about the identity of the image
- G06K9/46—Extraction of features or characteristics of the image
- G06K9/4604—Detecting partial patterns, e.g. edges or contours, or configurations, e.g. loops, corners, strokes, intersections
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06K9/6228—Selecting the most significant subset of features
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06K9/6232—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods
- G06K9/6247—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods based on an approximation criterion, e.g. principal component analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6201—Matching; Proximity measures
- G06K9/6202—Comparing pixel values or logical combinations thereof, or feature values having positional relevance, e.g. template matching
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30108—Industrial image inspection
- G06T2207/30148—Semiconductor; IC; Wafer
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10024—Color image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/68—Methods or arrangements for recognition using electronic means using sequential comparisons of the image signals with a plurality of references in which the sequence of the image signals or the references is relevant, e.g. addressable memory
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00127—Acquiring and recognising microscopic objects, e.g. biological cells and cellular parts
- G06K9/0014—Pre-processing, e.g. image segmentation ; Feature extraction
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20112—Image segmentation details
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10032—Satellite or aerial image; Remote sensing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00624—Recognising scenes, i.e. recognition of a whole field of perception; recognising scene-specific objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/02—Computer systems based on biological models using neural network models
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K2209/00—Indexing scheme relating to methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Dorafshan et al. | Comparison of deep convolutional neural networks and edge detectors for image-based crack detection in concrete | |
Nguyen et al. | Two-stage convolutional neural network for road crack detection and segmentation | |
Zhang et al. | Real-time detection of cracks on concrete bridge decks using deep learning in the frequency domain | |
Li et al. | Automatic pixel‐level multiple damage detection of concrete structure using fully convolutional network | |
US11144814B2 (en) | Structure defect detection using machine learning algorithms | |
Wan et al. | Ceramic tile surface defect detection based on deep learning | |
Dorafshan et al. | Deep learning neural networks for sUAS-assisted structural inspections: Feasibility and application | |
Duan et al. | Detection and segmentation of iron ore green pellets in images using lightweight U-net deep learning network | |
Suyama et al. | Deep neural networks based approach for welded joint detection of oil pipelines in radiographic images with Double Wall Double Image exposure | |
Savino et al. | Automated classification of civil structure defects based on convolutional neural network | |
KR20200087297A (en) | Defect inspection method and apparatus using image segmentation based on artificial neural network | |
Ali et al. | Vision-based concrete crack detection technique using cascade features | |
Kumaresan et al. | Deep learning-based weld defect classification using VGG16 transfer learning adaptive fine-tuning | |
Lopez Droguett et al. | Semantic segmentation model for crack images from concrete bridges for mobile devices | |
Zhang et al. | Automated fatigue crack detection in steel box girder of bridges based on ensemble deep neural network | |
Reghukumar et al. | Vision based segmentation and classification of cracks using deep neural networks | |
CN119006469A (en) | Automatic detection method and system for surface defects of substrate glass based on machine vision | |
Nguyen et al. | A computationally efficient crack detection approach based on deep learning assisted by stockwell transform and linear discriminant analysis | |
Shibano et al. | Improvement of crack detectivity for noisy concrete surface by machine learning methods and infrared images | |
Jivane et al. | Enhancement of an Algorithm for Oil Tank Detection in Satellite Images. | |
Ren et al. | A deep ensemble classifier for surface defect detection in aircraft visual inspection | |
Samatha et al. | IoT-Enabled Potato Diseases Prediction using Deep Learning | |
Singh et al. | Cucumber leaf disease detection and classification using a deep convolutional neural network | |
Üzen et al. | A novel hybrid attention gate based on vision transformer for the detection of surface defects | |
Sema et al. | Automatic detection and classification of mango disease using convolutional neural network and histogram oriented gradients |