Nothing Special   »   [go: up one dir, main page]

Plaimauer et al., 2001 - Google Patents

'Shed'furin: mapping of the cleavage determinants and identification of its C-terminus

Plaimauer et al., 2001

View PDF
Document ID
4892294503265104755
Author
Plaimauer B
Mohr G
Wernhart W
Himmelspach M
Dorner F
Schlokat U
Publication year
Publication venue
Biochemical Journal

External Links

Snippet

The human endoprotease furin is involved in the proteolytic maturation of the precursor molecules of a wide variety of bioactive proteins. Despite its localization in the membranes of the trans-Golgi system by means of a transmembrane domain, it has repeatedly been …
Continue reading at www.ncbi.nlm.nih.gov (PDF) (other versions)

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICRO-ORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING OR MAINTAINING MICRO-ORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6421Proteinases Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
    • C12N9/6424Serine endopeptidases (3.4.21)
    • C12N9/6427Chymotrypsins (3.4.21.1; 3.4.21.2); Trypsin (3.4.21.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICRO-ORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING OR MAINTAINING MICRO-ORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6421Proteinases Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
    • C12N9/6424Serine endopeptidases (3.4.21)
    • C12N9/6454Dibasic site splicing serine proteases, e.g. kexin (3.4.21.61); furin (3.4.21.75) and other proprotein convertases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICRO-ORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING OR MAINTAINING MICRO-ORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases Endopeptidases (3.4.21-3.4.25)
    • C12N9/52Proteinases Endopeptidases (3.4.21-3.4.25) derived from bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICRO-ORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING OR MAINTAINING MICRO-ORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases Endopeptidases (3.4.21-3.4.25)
    • C12N9/58Proteinases Endopeptidases (3.4.21-3.4.25) derived from fungi
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICRO-ORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING OR MAINTAINING MICRO-ORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/18Carboxylic ester hydrolases (3.1.1)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/06Preparation of peptides or proteins produced by the hydrolysis of a peptide bond, e.g. hydrolysate products
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/21Serine endopeptidases (3.4.21)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/50Fusion polypeptide containing protease site
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/81Protease inhibitors
    • C07K14/8107Endopeptidase (E.C. 3.4.21-99) inhibitors
    • C07K14/8146Metalloprotease (E.C. 3.4.24) inhibitors, e.g. tissue inhibitor of metallo proteinase, TIMP
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif

Similar Documents

Publication Publication Date Title
Plaimauer et al. ‘Shed’furin: mapping of the cleavage determinants and identification of its C-terminus
Skidgel et al. Cellular carboxypeptidases
Denault et al. Processing of proendothelin‐1 by human furin convertase
Mo et al. Distinct proteolytic processes generate the C and N termini of MHC class I-binding peptides
Benjannet et al. PC1 and PC2 are proprotein convertases capable of cleaving proopiomelanocortin at distinct pairs of basic residues.
Wasley et al. PACE/furin can process the vitamin K-dependent pro-factor IX precursor within the secretory pathway.
Denault et al. Furin/PACE/SPC1: a convertase involved in exocytic and endocytic processing of precursor proteins
EP1127154B1 (en) Method for the production of fvii
CA2191053C (en) A fusion protein comprising a furin derivative or a derivative of a furin analogue and a heterlogous sequence
Matthews et al. Autocatalytic maturation of the prohormone convertase PC2.
JP2014155506A (en) Furin polypeptide having improved characteristic
Creemers et al. Proprotein processing activity and cleavage site selectivity of the Kex2‐like endoprotease PACE4
Kin et al. Biosynthesis and Characterization of the Brain-Specific Membrane Protein DPPX, a Dipeptidyl Peptidase IV—Related Protein
CN102239175A (en) Polypeptide purification
Takahashi et al. Sequence requirements for endoproteolytic processing of precursor proteins by furin: transfection and in vitro experiments
Gensberg et al. Subtilisin-related serine proteases in the mammalian constitutive secretory pathway
WO2001010896A2 (en) Factor x analog with an improved ability to be activated
AU2001278431A1 (en) Mutated furin polypeptides having improved characteristics
Kido et al. Processing of proendothelin‐1 at the C‐terminus of big endothelin‐1 is essential for proteolysis by endothelin‐converting enzyme‐1 in vivo
AU2008253230B2 (en) Preparative purification process for human furin
Himmelspach et al. Recombinant human factor X: high yield expression and the role of furin in proteolytic maturation in vivo and in vitro
TAYLOR et al. Mutations within the propeptide, the primary cleavage site or the catalytic site, or deletion of C-terminal sequences, prevents secretion of proPC2 from transfected COS-7 cells
Denault et al. Comparative characterization of two forms of recombinant human SPC1 secreted from Schneider 2 cells
Mouchantaf et al. Prosomatostatin is proteolytically processed at the amino terminal segment by subtilase SKI-1
Taniguchi et al. A critical role for the carboxy terminal region of the proprotein convertase, PACE4A, in the regulation of its autocatalytic activation coupled with secretion