Nothing Special   »   [go: up one dir, main page]

Lee et al., 2012 - Google Patents

Thermal decay in underfloor air distribution (UFAD) systems: Fundamentals and influence on system performance

Lee et al., 2012

View PDF
Document ID
462245528610298846
Author
Lee K
Schiavon S
Bauman F
Webster T
Publication year
Publication venue
Applied Energy

External Links

Snippet

Underfloor air distribution (UFAD) is a mechanical ventilation strategy in which the conditioned air is primarily delivered to the zone from a pressurized plenum through floor mounted diffusers. Compared to conventional overhead (OH) mixing systems, UFAD has …
Continue reading at escholarship.org (PDF) (other versions)

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING, AIR-HUMIDIFICATION, VENTILATION, USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety systems or apparatus
    • F24F11/0009Electrical control or safety systems or apparatus
    • F24F11/0086Control systems or circuits characterised by other control features, e.g. display or monitoring devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING, AIR-HUMIDIFICATION, VENTILATION, USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety systems or apparatus
    • F24F11/0009Electrical control or safety systems or apparatus
    • F24F11/001Control systems or circuits characterised by their inputs, e.g. using sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING, AIR-HUMIDIFICATION, VENTILATION, USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/044Systems in which all treatment is given in the central station, i.e. all-air systems
    • F24F3/048Systems in which all treatment is given in the central station, i.e. all-air systems with temperature control at constant rate of air-flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BINDEXING SCHEME RELATING TO CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. INCLUDING HOUSING AND APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies
    • Y02B30/76Centralised control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices including control or safety methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING, AIR-HUMIDIFICATION, VENTILATION, USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat; combined with household units such as an oven or water heater
    • F24F5/0089Systems using radiation from walls or panels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BINDEXING SCHEME RELATING TO CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. INCLUDING HOUSING AND APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BINDEXING SCHEME RELATING TO CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. INCLUDING HOUSING AND APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/50Systems profiting of external/internal conditions
    • Y02B30/56Heat recovery units
    • Y02B30/563Air to air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BINDEXING SCHEME RELATING TO CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. INCLUDING HOUSING AND APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/08Energy efficient heating, ventilation or air conditioning [HVAC] relating to domestic heating, space heating or domestic hot water heating or supply systems [DHW]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING, AIR-HUMIDIFICATION, VENTILATION, USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING, AIR-HUMIDIFICATION, VENTILATION, USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Rooms units, e.g. receiving primary air from a central station or with supply of heating or cooling agents from a central station, such as those applied to air-treatment systems included in F24F3/00 and F24F5/00
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/46Component arrangements in separate outdoor units
    • F24F1/48Component arrangements in separate outdoor units characterized by air airflow, e.g. inlet or outlet airflow

Similar Documents

Publication Publication Date Title
Lee et al. Thermal decay in underfloor air distribution (UFAD) systems: Fundamentals and influence on system performance
Yu et al. Comparative study of the cooling energy performance of variable refrigerant flow systems and variable air volume systems in office buildings
Hasan et al. A combined low temperature water heating system consisting of radiators and floor heating
Kim et al. Evaluation of energy savings potential of variable refrigerant flow (VRF) from variable air volume (VAV) in the US climate locations
Rhee et al. A 50 year review of basic and applied research in radiant heating and cooling systems for the built environment
Buonomano et al. Dynamic energy performance analysis: Case study for energy efficiency retrofits of hospital buildings
Rasouli et al. Uncertainties in energy and economic performance of HVAC systems and energy recovery ventilators due to uncertainties in building and HVAC parameters
Hesaraki et al. A comparative review on the application of radiant low-temperature heating and high-temperature cooling for energy, thermal comfort, indoor air quality, design and control
Zhang et al. DeST—An integrated building simulation toolkit Part II: Applications
Tavares et al. Energy efficient building design using sensitivity analysis—A case study
Fan et al. Energy consumption analysis intended for real office space with energy recovery ventilator by integrating BES and CFD approaches
Ng et al. Multizone airflow models for calculating infiltration rates in commercial reference buildings
Xu et al. Dynamic indoor comfort temperature settings based on the variation in clothing insulation and its energy-saving potential for an air-conditioning system
Raftery et al. Performance analysis of an integrated UFAD and radiant hydronic slab system
Park et al. Experimental evaluation and simulation of a variable refrigerant-flow (VRF) air-conditioning system with outdoor air processing unit
Yu et al. Economic benefits of optimal control for water-cooled chiller systems serving hotels in a subtropical climate
Aynur et al. Simulation of a VAV air conditioning system in an existing building for the cooling mode
Rasouli et al. Energetic, economic and environmental analysis of a health-care facility HVAC system equipped with a run-around membrane energy exchanger
Kim et al. Determining operation schedules of heat recovery ventilators for optimum energy savings in high-rise residential buildings
Lee et al. Field test and simulation evaluation of variable refrigerant flow systems performance
Jain et al. A financial feasibility evaluation of using evaporative cooling with air-conditioning (in hybrid mode) in commercial buildings in India
Lau et al. Energy analysis for workshops with floor–supply displacement ventilation under the US climates
Lee Optimization of indoor climate conditioning with passive and active methods using GA and CFD
Xue et al. Influence of floor plenum on energy performance of buildings with UFAD systems
Lee et al. Supply air temperature impact in underfloor air distribution systems under Korean climatic conditions: Energy, humidity and comfort