Chung et al., 1994 - Google Patents
Fuzzy competitive learningChung et al., 1994
- Document ID
- 4563625025904093666
- Author
- Chung F
- Lee T
- Publication year
- Publication venue
- Neural Networks
External Links
Snippet
In this paper, a fuzzy competitive learning (FCL) paradigm adopting a principle of learn according to how well it wins is proposed, based upon which three existing competitive learning algorithms, namely, the unsupervised competitive learning, learning vector …
- 230000002860 competitive 0 title abstract description 50
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/02—Computer systems based on biological models using neural network models
- G06N3/08—Learning methods
- G06N3/082—Learning methods modifying the architecture, e.g. adding or deleting nodes or connections, pruning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/02—Computer systems based on biological models using neural network models
- G06N3/04—Architectures, e.g. interconnection topology
- G06N3/0472—Architectures, e.g. interconnection topology using probabilistic elements, e.g. p-rams, stochastic processors
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/02—Computer systems based on biological models using neural network models
- G06N3/06—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
- G06N3/063—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06K9/6232—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods
- G06K9/6251—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods based on a criterion of topology preservation, e.g. multidimensional scaling, self-organising maps
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6268—Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
- G06K9/627—Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches based on distances between the pattern to be recognised and training or reference patterns
- G06K9/6271—Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches based on distances between the pattern to be recognised and training or reference patterns based on distances to prototypes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N99/00—Subject matter not provided for in other groups of this subclass
- G06N99/005—Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06K9/6232—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods
- G06K9/6247—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods based on an approximation criterion, e.g. principal component analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6279—Classification techniques relating to the number of classes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/12—Computer systems based on biological models using genetic models
- G06N3/126—Genetic algorithms, i.e. information processing using digital simulations of the genetic system
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/68—Methods or arrangements for recognition using electronic means using sequential comparisons of the image signals with a plurality of references in which the sequence of the image signals or the references is relevant, e.g. addressable memory
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/0265—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
- G05B13/027—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion using neural networks only
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/36—Image preprocessing, i.e. processing the image information without deciding about the identity of the image
- G06K9/46—Extraction of features or characteristics of the image
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chung et al. | Fuzzy competitive learning | |
Bruske et al. | Dynamic cell structure learns perfectly topology preserving map | |
Vuorimaa | Fuzzy self-organizing map | |
Karayiannis et al. | An integrated approach to fuzzy learning vector quantization and fuzzy c-means clustering | |
Kangas | Time-delayed self-organizing maps | |
Nguyen et al. | FCMAC-BYY: fuzzy CMAC using Bayesian Ying–Yang learning | |
He | Neural Network and its Application in IR | |
Ronen et al. | Hybrid model building methodology using unsupervised fuzzy clustering and supervised neural networks | |
Pham et al. | Self-organizing neural-network-based pattern clustering method with fuzzy outputs | |
Zhou et al. | Learning criteria for training neural network classifiers | |
Lin | Fuzzy clustering using a compensated fuzzy Hopfield network | |
Iwana et al. | A robust dissimilarity-based neural network for temporal pattern recognition | |
Newton et al. | Self-organizing leader clustering in a neural network using a fuzzy learning rule | |
Granger et al. | Particle swarm optimization of fuzzy ARTMAP parameters | |
Venugopal | Artificial neural networks and fuzzy models: New tools for part-machine grouping | |
Karlık et al. | Fuzzy Clustering Neural Networks for Real‐Time Odor Recognition System | |
Raheni et al. | Stochastic artificial intelligence | |
Jwo et al. | Neural network-based geometry classification for navigation satellite selection | |
Hung et al. | Foundation of Deep Machine Learning in Neural Networks | |
Crowley | Machine learning with neural networks | |
Newton et al. | An adaptive fuzzy system for control and clustering of arbitrary data patterns | |
Duch et al. | Neural networks in non-euclidean spaces | |
Lee et al. | Inductive learning of fuzzy rule-based classifier with self-constructing clustering | |
PANDYA et al. | A stochastic parallel algorithm for supervised learning in neural networks | |
Kim | An integrated adaptive fuzzy clustering model for pattern recognition |