Anitha et al., 2014 - Google Patents
Combinatorial anticancer effects of curcumin and 5-fluorouracil loaded thiolated chitosan nanoparticles towards colon cancer treatmentAnitha et al., 2014
- Document ID
- 439174461139169826
- Author
- Anitha A
- Deepa N
- Chennazhi K
- Lakshmanan V
- Jayakumar R
- Publication year
- Publication venue
- Biochimica et Biophysica Acta (BBA)-General Subjects
External Links
Snippet
Background Evaluation of the combinatorial anticancer effects of curcumin/5-fluorouracil loaded thiolated chitosan nanoparticles (CRC-TCS-NPs/5-FU-TCS-NPs) on colon cancer cells and the analysis of pharmacokinetics and biodistribution of CRC-TCS-NPs/5-FU-TCS …
- GHASVSINZRGABV-UHFFFAOYSA-N 5-flurouricil   FC1=CNC(=O)NC1=O 0 title abstract description 149
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/51—Nanocapsules; Nanoparticles
- A61K9/5107—Excipients; Inactive ingredients
- A61K9/513—Organic macromolecular compounds; Dendrimers
- A61K9/5161—Polysaccharides, e.g. alginate, chitosan, cellulose derivatives; Cyclodextrin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/51—Nanocapsules; Nanoparticles
- A61K9/5107—Excipients; Inactive ingredients
- A61K9/513—Organic macromolecular compounds; Dendrimers
- A61K9/5146—Organic macromolecular compounds; Dendrimers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyamines, polyanhydrides
- A61K9/5153—Polyesters, e.g. poly(lactide-co-glycolide)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives
- A61K47/48—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates
- A61K47/48769—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates the conjugate being characterized by a special physical or galenical form
- A61K47/48853—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates the conjugate being characterized by a special physical or galenical form the form being a particulate, powder, adsorbate, bead, sphere
- A61K47/48876—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates the conjugate being characterized by a special physical or galenical form the form being a particulate, powder, adsorbate, bead, sphere the form being a solid micro- or nanoparticle having no hollow or gas-filled core
- A61K47/48884—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates the conjugate being characterized by a special physical or galenical form the form being a particulate, powder, adsorbate, bead, sphere the form being a solid micro- or nanoparticle having no hollow or gas-filled core the form being a nanoparticle, e.g. an immuno-nanoparticle
- A61K47/48892—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates the conjugate being characterized by a special physical or galenical form the form being a particulate, powder, adsorbate, bead, sphere the form being a solid micro- or nanoparticle having no hollow or gas-filled core the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/715—Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
- A61K31/716—Glucans
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives
- A61K47/48—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates
- A61K47/48769—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates the conjugate being characterized by a special physical or galenical form
- A61K47/48853—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates the conjugate being characterized by a special physical or galenical form the form being a particulate, powder, adsorbate, bead, sphere
- A61K47/48861—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates the conjugate being characterized by a special physical or galenical form the form being a particulate, powder, adsorbate, bead, sphere the form being an inorganic particle, e.g. a ceramic particle, silica particle, ferrite, synsorb
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine, rifamycins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives
- A61K47/48—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates
- A61K47/48007—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates the pharmacologically- or therapeutically-active agent being covalently bound or complexed to a modifying agent
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic, hydroximic acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
- A61K33/00—Medicinal preparations containing inorganic active ingredients
- A61K33/24—Heavy metals; Compounds thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
- A61K41/00—Medicinal preparations obtained by treating materials with wave energy or particle radiation; Therapies using these preparations
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Anitha et al. | Combinatorial anticancer effects of curcumin and 5-fluorouracil loaded thiolated chitosan nanoparticles towards colon cancer treatment | |
Anitha et al. | In vitro combinatorial anticancer effects of 5-fluorouracil and curcumin loaded N, O-carboxymethyl chitosan nanoparticles toward colon cancer and in vivo pharmacokinetic studies | |
Xu et al. | Rationally designed rapamycin-encapsulated ZIF-8 nanosystem for overcoming chemotherapy resistance | |
Xiong et al. | Intracellular cascade activated nanosystem for improving ER+ breast cancer therapy through attacking GSH-mediated metabolic vulnerability | |
Shang et al. | Platelet-membrane-camouflaged black phosphorus quantum dots enhance anticancer effect mediated by apoptosis and autophagy | |
Bai et al. | Prussian blue nanozymes prevent anthracycline-induced liver injury by attenuating oxidative stress and regulating inflammation | |
Pellosi et al. | Targeted and synergic glioblastoma treatment: multifunctional nanoparticles delivering verteporfin as adjuvant therapy for temozolomide chemotherapy | |
Saravanakumar et al. | Synthesis and characterization of nano-chitosan capped gold nanoparticles with multifunctional bioactive properties | |
Liu et al. | Selenium nanoparticles as a carrier of 5-fluorouracil to achieve anticancer synergism | |
Li et al. | Mulberry-like dual-drug complicated nanocarriers assembled with apogossypolone amphiphilic starch micelles and doxorubicin hyaluronic acid nanoparticles for tumor combination and targeted therapy | |
Shi et al. | Cyclodextrin capped gold nanoparticles as a delivery vehicle for a prodrug of cisplatin | |
Amirani et al. | Effects of chitosan and oligochitosans on the phosphatidylinositol 3-kinase-AKT pathway in cancer therapy | |
Kumar et al. | Folate/N-acetyl glucosamine conjugated mesoporous silica nanoparticles for targeting breast cancer cells: A comparative study | |
Chaurasia et al. | Lipopolysaccharide based oral nanocarriers for the improvement of bioavailability and anticancer efficacy of curcumin | |
Gounden et al. | Chitosan-modified silver nanoparticles enhance cisplatin activity in breast cancer cells | |
Zhu et al. | CD147 monoclonal antibody mediated by chitosan nanoparticles loaded with α-hederin enhances antineoplastic activity and cellular uptake in liver cancer cells | |
Wang et al. | Barbaloin loaded polydopamine-polylactide-TPGS (PLA-TPGS) nanoparticles against gastric cancer as a targeted drug delivery system: Studies in vitro and in vivo | |
Feng et al. | Yeast microcapsule mediated natural products delivery for treating ulcerative colitis through anti-inflammatory and regulation of macrophage polarization | |
Cho et al. | Tumor homing reactive oxygen species nanoparticle for enhanced cancer therapy | |
Pramanik et al. | A novel drug “copper acetylacetonate” loaded in folic acid-tagged chitosan nanoparticle for efficient cancer cell targeting | |
Lee et al. | Mannosylated poly (acrylic acid)-coated mesoporous silica nanoparticles for anticancer therapy | |
Liu et al. | Delivery of sesamol using polyethylene-glycol-functionalized selenium nanoparticles in human liver cells in culture | |
Hemlata et al. | ROS-mediated apoptosis induced by BSA nanospheres encapsulated with fruit extract of cucumis prophetarum in various human cancer cell lines | |
Bardania et al. | Folic acid‐functionalized albumin/graphene oxide nanocomposite to simultaneously deliver curcumin and 5‐fluorouracil into human colorectal cancer cells: an in vitro study | |
Vaezi et al. | Hemoglobin bio-adhesive nanoparticles as a colon-specific delivery system for sustained release of 5-aminosalicylic acid in the effective treatment of inflammatory bowel disease |