Villaraga-Gómez, 2024 - Google Patents
Taking Industrial Metrology to the Next Level: Dimensional Measurements with 3D X-ray MicroscopyVillaraga-Gómez, 2024
- Document ID
- 4292512748151303567
- Author
- Villaraga-Gómez H
- Publication year
- Publication venue
- Quality
External Links
Snippet
The miniaturization and integration of components in small devices, with feature sizes on the order of 10 mm or smaller, is creating an increasing demand for high-resolution metrology in the industry of manufactured and assembled devices. Today's manufacturers demand …
- 238000005259 measurement 0 title abstract description 40
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/95—Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/93—Detection standards; Calibrating baseline adjustment, drift correction
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B21/00—Measuring arrangements or details thereof in so far as they are not adapted to particular types of measuring means of the preceding groups
- G01B21/02—Measuring arrangements or details thereof in so far as they are not adapted to particular types of measuring means of the preceding groups for measuring length, width, or thickness
- G01B21/04—Measuring arrangements or details thereof in so far as they are not adapted to particular types of measuring means of the preceding groups for measuring length, width, or thickness by measuring coordinates of points
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical means
- G01B11/24—Measuring arrangements characterised by the use of optical means for measuring contours or curvatures
- G01B11/2433—Measuring arrangements characterised by the use of optical means for measuring contours or curvatures for measuring outlines by shadow casting
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/22—Details, e.g. general constructional or apparatus details
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B21/00—Measuring arrangements or details thereof in so far as they are not adapted to particular types of measuring means of the preceding groups
- G01B21/20—Measuring arrangements or details thereof in so far as they are not adapted to particular types of measuring means of the preceding groups for measuring contours or curvatures, e.g. determining profile
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/04—Analysing solids
- G01N29/06—Visualisation of the interior, e.g. acoustic microscopy
- G01N29/0609—Display arrangements, e.g. colour displays
- G01N29/0618—Display arrangements, e.g. colour displays synchronised with scanning, e.g. in real-time
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B5/00—Measuring arrangements characterised by the use of mechanical means
- G01B5/004—Measuring arrangements characterised by the use of mechanical means for measuring coordinates of points
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/04—Analysing solids
- G01N29/06—Visualisation of the interior, e.g. acoustic microscopy
- G01N29/0654—Imaging
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B7/00—Measuring arrangements characterised by the use of electric or magnetic means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B2210/00—Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
- G01B2210/40—Caliper-like sensors
- G01B2210/44—Caliper-like sensors with detectors on both sides of the object to be measured
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons
- G01N23/02—Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons by transmitting the radiation through the material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR
- G01M11/00—Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
- G01N27/72—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating magnetic variables
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R1/00—Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
- G01R1/02—General constructional details
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bartscher et al. | Enhancement and proof of accuracy of industrial computed tomography (CT) measurements | |
Müller et al. | Computed tomography as a tool for tolerance verification of industrial parts | |
Zanini et al. | Dimensional verification of metal additively manufactured lattice structures by X-ray computed tomography: Use of a newly developed calibrated artefact to achieve metrological traceability | |
US20100126277A1 (en) | Systems and methods for inspecting an object using ultrasound | |
Zangl et al. | Highly accurate optical µCMM for measurement of micro holes | |
CN111060042A (en) | Method for measuring uncertainty of industrial CT geometric dimension based on spherical model | |
Zwanenburg et al. | Performance testing of dimensional X-ray computed tomography systems | |
Lettenbauer et al. | Means to verify the accuracy of CT systems for metrology applications (in the absence of established international standards) | |
McGregor et al. | Large batch metrology on internal features of additively manufactured parts using X-ray computed tomography | |
Villaraga-Gómez | Taking Industrial Metrology to the Next Level: Dimensional Measurements with 3D X-ray Microscopy | |
Bartscher et al. | Performance assessment of geometry measurements with micro-CT using a dismountable work-piece-near reference standard | |
Villarraga-Gómez et al. | High-precision metrology with high-resolution computed tomography using 3D X-ray microscopes | |
Kurc et al. | Non-contact robotic measurement of jet engine components with 3D optical scanner and UTT method | |
Brunke et al. | Precise 3D dimensional metrology using high-resolution x-ray computed tomography (muCT) | |
Pant et al. | Role of metrology in the advanced manufacturing processes | |
Wang | Investigation of X-ray computed tomography for dimensional measurement | |
Hermanek et al. | Establishment of metrological traceability in porosity measurements by x-ray computed tomography | |
Villarraga-Gómez et al. | Extending the measurement capabilities of 3D X-ray microscopy to dimensional metrology | |
CN104376587A (en) | Loop heat tube evaporator assembly quality evaluation method based on industrial CT detection | |
Müller | Use of reference objects for correction of measuring errors in X-ray computed tomography | |
Zhang et al. | Multi-sensor registration method based on a composite standard artefact | |
Villarraga-Gómez et al. | Improving the dimensional accuracy of computed tomography data obtained with high-resolution 3D X-ray microscopes | |
Kraemer et al. | Development of test bodies for deployment in Industrial Computed Tomography | |
Zhang et al. | Parallelism measurement method for nontransparent flat parts | |
Ehrbar et al. | Automated assessment for grinding spots on aircraft landing gear components using robotic white light interferometry |