Van Rethy et al., 2013 - Google Patents
Performance analysis of energy-efficient BBPLL-based sensor-to-digital convertersVan Rethy et al., 2013
View PDF- Document ID
- 4240949086324114024
- Author
- Van Rethy J
- Danneels H
- Gielen G
- Publication year
- Publication venue
- IEEE Transactions on Circuits and Systems I: Regular Papers
External Links
Snippet
Highly digital-oriented architectures for sensor interfaces are very interesting for their high energy efficiency, especially in smaller CMOS technologies which offer low-voltage design. This paper presents the analysis of a Bang-Bang Phase-Locked Loop Sensor-to-Digital …
- 238000004458 analytical method 0 title abstract description 20
Classifications
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M3/00—Conversion of analogue values to or from differential modulation
- H03M3/30—Delta-sigma modulation
- H03M3/39—Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators
- H03M3/412—Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the number of quantisers and their type and resolution
- H03M3/422—Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the number of quantisers and their type and resolution having one quantiser only
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M3/00—Conversion of analogue values to or from differential modulation
- H03M3/30—Delta-sigma modulation
- H03M3/39—Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators
- H03M3/436—Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the order of the loop filter, e.g. error feedback type
- H03M3/438—Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the order of the loop filter, e.g. error feedback type the modulator having a higher order loop filter in the feedforward path
- H03M3/454—Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the order of the loop filter, e.g. error feedback type the modulator having a higher order loop filter in the feedforward path with distributed feedback, i.e. with feedback paths from the quantiser output to more than one filter stage
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M3/00—Conversion of analogue values to or from differential modulation
- H03M3/30—Delta-sigma modulation
- H03M3/39—Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators
- H03M3/436—Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the order of the loop filter, e.g. error feedback type
- H03M3/438—Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the order of the loop filter, e.g. error feedback type the modulator having a higher order loop filter in the feedforward path
- H03M3/44—Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the order of the loop filter, e.g. error feedback type the modulator having a higher order loop filter in the feedforward path with provisions for rendering the modulator inherently stable
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M3/00—Conversion of analogue values to or from differential modulation
- H03M3/30—Delta-sigma modulation
- H03M3/458—Analogue/digital converters using delta-sigma modulation as an intermediate step
- H03M3/494—Sampling or signal conditioning arrangements specially adapted for delta-sigma type analogue/digital conversion systems
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M3/00—Conversion of analogue values to or from differential modulation
- H03M3/30—Delta-sigma modulation
- H03M3/458—Analogue/digital converters using delta-sigma modulation as an intermediate step
- H03M3/462—Details relating to the decimation process
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/06—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
- H03L7/08—Details of the phase-locked loop
- H03L7/085—Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
- H03L7/093—Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal using special filtering or amplification characteristics in the loop
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M3/00—Conversion of analogue values to or from differential modulation
- H03M3/30—Delta-sigma modulation
- H03M3/50—Digital/analogue converters using delta-sigma modulation as an intermediate step
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/06—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
- H03L7/08—Details of the phase-locked loop
- H03L7/099—Details of the phase-locked loop concerning mainly the controlled oscillator of the loop
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/06—Continuously compensating for, or preventing, undesired influence of physical parameters
- H03M1/0617—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence
- H03M1/0634—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by averaging out the errors, e.g. using sliding scale
- H03M1/0656—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by averaging out the errors, e.g. using sliding scale in the time domain
- H03M1/066—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by averaging out the errors, e.g. using sliding scale in the time domain by continuously permuting the elements used, i.e. dynamic element matching
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/66—Digital/analogue converters
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M7/00—Conversion of a code where information is represented by a given sequence or number of digits to a code where the same information or similar information or a subset of information is represented by a different sequence or number of digits
- H03M7/30—Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
- H03M7/3002—Conversion to or from differential modulation
- H03M7/3004—Digital delta-sigma modulation
- H03M7/3015—Structural details of digital delta-sigma modulators
- H03M7/302—Structural details of digital delta-sigma modulators characterised by the number of quantisers and their type and resolution
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Van Rethy et al. | Performance analysis of energy-efficient BBPLL-based sensor-to-digital converters | |
Cardes et al. | 0.04-mm 2 103-dB-A Dynamic Range Second-Order VCO-Based Audio $\Sigma\Delta $ ADC in 0.13-$\mu $ m CMOS | |
Park et al. | A 78 dB SNDR 87 mW 20 MHz Bandwidth Continuous-Time $\Delta\Sigma $ ADC With VCO-Based Integrator and Quantizer Implemented in 0.13$\mu $ m CMOS | |
Van Rethy et al. | Supply-noise-resilient design of a BBPLL-based force-balanced wheatstone bridge interface in 130-nm CMOS | |
Lee et al. | A 1 GHz ADPLL With a 1.25 ps Minimum-Resolution Sub-Exponent TDC in 0.18$\mu $ m CMOS | |
Gielen et al. | Time-encoding analog-to-digital converters: Bridging the analog gap to advanced digital cmos-part 1: Basic principles | |
Babaie-Fishani et al. | A mostly digital VCO-based CT-SDM with third-order noise shaping | |
Elshazly et al. | A noise-shaping time-to-digital converter using switched-ring oscillators—Analysis, design, and measurement techniques | |
Hovin et al. | Delta-sigma modulators using frequency-modulated intermediate values | |
KR101624785B1 (en) | System and method for an oversampled data converter | |
Shu et al. | LMS-Based Noise Leakage Calibration of Cascaded Continuous-Time $\Delta\Sigma $ Modulators | |
Sacco et al. | A 16.1-bit resolution 0.064-mm 2 compact highly digital closed-loop single-VCO-based 1-1 sturdy-MASH resistance-to-digital converter with high robustness in 180-nm CMOS | |
Markus et al. | Incremental delta-sigma structures for DC measurement: An overview | |
Hanumolu et al. | Digitally-enhanced phase-locking circuits | |
EP3195479A1 (en) | Phase-domain digitizer | |
Marin et al. | A Robust BBPLL-Based 0.18-$\mu $ m CMOS Resistive Sensor Interface With High Drift Resilience Over a− 40° C–175° C Temperature Range | |
JP4687512B2 (en) | ΔΣ AD converter | |
US7719369B2 (en) | Sigma delta digital to analog converter with wide output range and improved linearity | |
Sacco et al. | A 96.9-dB-resolution 109-μW second-order robust closed-loop VCO-based sensor interface for multiplexed single-ended resistance readout in 180-nm CMOS | |
Gielen et al. | Time-encoding VCO-ADCs for Integrated Systems-on-Chip | |
Sönmez et al. | Analysis and Design of VCO-Based Phase-Domain $\Sigma\Delta $ Modulators | |
US11632118B2 (en) | Closed-loop oscillator based sensor interface circuit | |
Teh et al. | A 12-bit branching time-to-digital converter with power saving features and digital based resolution tuning for PVT variations | |
Georgoulopoulos et al. | Parameterizable real number models for mixed-signal designs using systemverilog | |
Tamaddon et al. | High-performance time-based continuous-time sigma-delta modulators using single-opamp resonator and noise-shaped quantizer |