Angrishi et al., 2008 - Google Patents
Analysis of a real-time network using statistical network calculus with effective bandwidth and effective capacityAngrishi et al., 2008
View PDF- Document ID
- 4222826972576695121
- Author
- Angrishi K
- Killat U
- Publication year
- Publication venue
- 14th GI/ITG Conference-Measurement, Modelling and Evalutation of Computer and Communication Systems
External Links
Snippet
The Internet traffic consists of an increasing amount of soft real-time flows, which can tolerate very small delay variation and losses. Allowing probabilistic Quality of Service (QoS) violation for these flows can greatly help to improve resource utilization. However, this …
- 238000004458 analytical method 0 title abstract description 23
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/54—Store-and-forward switching systems
- H04L12/56—Packet switching systems
- H04L12/5601—Transfer mode dependent, e.g. ATM
- H04L2012/5629—Admission control
- H04L2012/5631—Resource management and allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/54—Store-and-forward switching systems
- H04L12/56—Packet switching systems
- H04L12/5601—Transfer mode dependent, e.g. ATM
- H04L12/5602—Bandwidth control in ATM Networks, e.g. leaky bucket
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/54—Store-and-forward switching systems
- H04L12/56—Packet switching systems
- H04L12/5695—Admission control; Resource allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/54—Store-and-forward switching systems
- H04L12/56—Packet switching systems
- H04L12/5693—Queue scheduling in packet switching networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/10—Flow control or congestion control
- H04L47/24—Flow control or congestion control depending on the type of traffic, e.g. priority or quality of service [QoS]
- H04L47/2441—Flow classification
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/70—Admission control or resource allocation
- H04L47/80—Actions related to the nature of the flow or the user
- H04L47/805—QOS or priority aware
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing packet switching networks
- H04L43/08—Monitoring based on specific metrics
- H04L43/0876—Network utilization
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/02—Details
- H04L12/26—Monitoring arrangements; Testing arrangements
- H04L12/2602—Monitoring arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance or administration or management of packet switching networks
- H04L41/50—Network service management, i.e. ensuring proper service fulfillment according to an agreement or contract between two parties, e.g. between an IT-provider and a customer
- H04L41/5003—Managing service level agreement [SLA] or interaction between SLA and quality of service [QoS]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/70—Admission control or resource allocation
- H04L47/82—Miscellaneous aspects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance or administration or management of packet switching networks
- H04L41/50—Network service management, i.e. ensuring proper service fulfillment according to an agreement or contract between two parties, e.g. between an IT-provider and a customer
- H04L41/5019—Ensuring SLA
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/10—Flow control or congestion control
- H04L47/15—Flow control or congestion control in relation to multipoint traffic
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance or administration or management of packet switching networks
- H04L41/14—Arrangements for maintenance or administration or management of packet switching networks involving network analysis or design, e.g. simulation, network model or planning
- H04L41/147—Arrangements for maintenance or administration or management of packet switching networks involving network analysis or design, e.g. simulation, network model or planning for prediction of network behaviour
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/10—Flow control or congestion control
- H04L47/26—Explicit feedback to the source, e.g. choke packet
- H04L47/263—Source rate modification after feedback
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/10—Flow control or congestion control
- H04L47/21—Flow control or congestion control using leaky bucket
- H04L47/215—Token bucket
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance or administration or management of packet switching networks
- H04L41/08—Configuration management of network or network elements
- H04L41/0896—Bandwidth or capacity management, i.e. automatically increasing or decreasing capacities, e.g. bandwidth on demand
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | A network calculus with effective bandwidth | |
Burchard et al. | A min-plus calculus for end-to-end statistical service guarantees | |
Sivaraman et al. | Providing end-to-end statistical delay guarantees with earliest deadline first scheduling and per-hop traffic shaping | |
Mohammed et al. | A survey on the common network traffic sources models | |
US20070121505A1 (en) | Providing Proportionally Fair Bandwidth Allocation in Communication Systems | |
Burchard et al. | On superlinear scaling of network delays | |
Liebeherr et al. | On the impact of link scheduling on end-to-end delays in large networks | |
US20020039349A1 (en) | Telecommunications traffic regulator | |
Liebeherr et al. | Statistical per-flow service bounds in a network with aggregate provisioning | |
Jiang et al. | Measurement-based admission control for a flow-aware network | |
Angrishi et al. | Analysis of a real-time network using statistical network calculus with effective bandwidth and effective capacity | |
Jiang | Stochastic service curve and delay bound analysis: A single node case | |
Ghiassi-Farrokhfal et al. | On the impact of finite buffers on per-flow delays in FIFO queues | |
Kassim et al. | Time based traffic policing and shaping algorithms on campus network internet traffic | |
Angrishi et al. | On the threshold for observing approximate invariance of effective bandwidth | |
Frost | Quantifying the temporal characteristics of network congestion events for multimedia services | |
Liebeherr et al. | Does link scheduling matter on long paths? | |
Lin et al. | Loss probability for a finite buffer multiplexer with the m/g/∞ input process | |
Marosits et al. | CAC algorithm based on advanced round robin method for QoS networks | |
Kulikovs et al. | Remarks regarding queuing model and packet loss probability for the traffic with self-similar characteristics | |
Angrishi et al. | Analysis of a real-time network using statistical network calculus with approximate invariance of effective bandwidth | |
Ciucu et al. | On the convergence to fairness in overloaded FIFO systems | |
Biro et al. | A novel probabilistic extension of network calculus for workload loss examinations | |
Liu | Studying the effective bandwidth through the distribution of one-way delays | |
Menth et al. | Packet waiting time for multiplexed periodic on/off streams in the presence of overbooking |