Nothing Special   »   [go: up one dir, main page]

Yoon et al., 2008 - Google Patents

Synthesis and characterization of fluorene‐based copolymers containing benzothiadiazole derivative for light‐emitting diodes applications

Yoon et al., 2008

Document ID
4204441071352335658
Author
Yoon K
Park J
Lee S
Song M
Shin I
Lee J
Gal Y
Jin S
Publication year
Publication venue
Journal of Polymer Science Part A: Polymer Chemistry

External Links

Snippet

Five new thermally robust electroluminescent fluorene‐based conjugated copolymers, including poly [2, 7‐(9, 9‐dioctylfluorene)‐co‐4, 7‐{5, 6‐bis (3, 7‐dimethyloctyloxymethyl)‐2, 1, 3‐(benzothiadiazole)}](PFO‐P2C10BT) were synthesized and used to fabricate the …
Continue reading at onlinelibrary.wiley.com (other versions)

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/0032Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
    • H01L51/0034Organic polymers or oligomers
    • H01L51/0035Organic polymers or oligomers comprising aromatic, heteroaromatic, or arrylic chains, e.g. polyaniline, polyphenylene, polyphenylene vinylene
    • H01L51/0038Poly-phenylenevinylene and derivatives
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/0032Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
    • H01L51/0034Organic polymers or oligomers
    • H01L51/0043Copolymers
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/0032Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
    • H01L51/005Macromolecular systems with low molecular weight, e.g. cyanine dyes, coumarine dyes, tetrathiafulvalene
    • H01L51/0062Macromolecular systems with low molecular weight, e.g. cyanine dyes, coumarine dyes, tetrathiafulvalene aromatic compounds comprising a hetero atom, e.g.: N,P,S
    • H01L51/0071Polycyclic condensed heteroaromatic hydrocarbons
    • H01L51/0072Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ringsystem, e.g. phenanthroline, carbazole
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/50Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes [OLED] or polymer light emitting devices [PLED];
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/54Material technologies
    • Y02E10/549Material technologies organic PV cells
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2251/00Indexing scheme relating to organic semiconductor devices covered by group H01L51/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1441Heterocyclic

Similar Documents

Publication Publication Date Title
Tamilavan et al. Synthesis and characterization of indenofluorene‐based copolymers containing 2, 5‐bis (2‐thienyl)‐N‐arylpyrrole for bulk heterojunction solar cells and polymer light‐emitting diodes
Wu et al. Synthesis and characterization of new fluorene-acceptor alternating and random copolymers for light-emitting applications
Cho et al. Saturated and efficient red light-emitting fluorene-based alternating polymers containing phenothiazine derivatives
Yang et al. Synthesis and optical and electroluminescent properties of novel conjugated copolymers derived from fluorene and benzoselenadiazole
Cho et al. Synthesis and color tuning of new fluorene-based copolymers
Xia et al. Novel random low‐band‐gap fluorene‐based copolymers for deep red/near infrared light‐emitting diodes and bulk heterojunction photovoltaic cells
Thompson et al. Donor–acceptor copolymers for red‐and near‐infrared‐emitting polymer light‐emitting diodes
Cao et al. Synthesis and characterization of novel red‐emitting alternating copolymers based on fluorene and diketopyrrolopyrrole derivatives
Li et al. Synthesis and properties of polythiophene derivatives containing triphenylamine moiety and their photovoltaic applications
Zhang et al. A Series of Energy‐Transfer Copolymers Derived from Fluorene and 4, 7‐Dithienylbenzotriazole for High Efficiency Yellow, Orange, and White Light‐Emitting Diodes
Agneeswari et al. Synthesis of polymers containing 1, 2, 4‐oxadiazole as an electron‐acceptor moiety in their main chain and their solar cell applications
Tamilavan et al. Synthesis of three new 1‐(2, 6‐diisopropylphenyl)‐2, 5‐di (2‐thienyl) pyrrole‐based donor polymers and their bulk heterojunction solar cell applications
Wu et al. New Fluorene‐Acceptor Random Copolymers: Towards Pure White Light Emission from a Single Polymer
Usluer et al. Charge carrier mobility, photovoltaic, and electroluminescent properties of anthracene‐based conjugated polymers bearing randomly distributed side chains
Huang et al. Synthesis and optical and electroluminescent properties of novel conjugated polyelectrolytes and their neutral precursors derived from fluorene and benzoselenadiazole
Tsami et al. Alternating fluorene‐di (thiophene) quinoxaline copolymers via microwave‐supported suzuki cross‐coupling reactions
Yang et al. Light‐emitting copolymers based on fluorene and selenophene—Comparative studies with its sulfur analogue: Poly (fluorene‐co‐thiophene)
Tang et al. Synthesis, characterization, and photovoltaic properties of novel conjugated copolymers derived from phenothiazines
Bouguerra et al. Synthesis and Photophysical and Electroluminescent Properties of Poly (1, 4-phenylene–ethynylene)-alt-poly (1, 4-phenylene–vinylene) s with Various Dissymmetric Substitution of Alkoxy Side Chains
Umeyama et al. Synthesis of low bandgap polymers based on thienoquinodimethane units and their applications in bulk heterojunction solar cells
Jeong et al. Synthesis and characterization of indeno [1, 2‐b] fluorene‐based white light‐emitting copolymer
Xie et al. A π‐stacked and conjugated hybrid based on poly (N‐vinylcarbazole) postfunctionalized with terfluorene for stable deep‐blue hole‐transporting materials
Yoon et al. Synthesis and characterization of fluorene‐based copolymers containing benzothiadiazole derivative for light‐emitting diodes applications
Tang et al. Synthesis, photophysics, theoretical modeling, and electroluminescence of novel 2, 7‐carbazole‐based conjugated polymers with sterically hindered structures
Dong et al. Functionality of peripheral side chain for enhanced performance of conjugated polymer—F8BT as an example