Motra et al., 2014 - Google Patents
Assessment of strain measurement techniques to characterise mechanical properties of structural steelMotra et al., 2014
View HTML- Document ID
- 4190276689568544643
- Author
- Motra H
- Hildebrand J
- Dimmig-Osburg A
- Publication year
- Publication venue
- Engineering Science and Technology, an International Journal
External Links
Snippet
Strain measurement is important in mechanical testing. A wide variety of techniques exists for measuring strain in the tensile test; namely the strain gauge, extensometer, stress and strain determined by machine crosshead motion, Geometric Moire technique, optical strain …
- 238000000691 measurement method 0 title abstract description 23
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/40—Investigating hardness or rebound hardness
- G01N3/42—Investigating hardness or rebound hardness by performing impressions under a steady load by indentors, e.g. sphere, pyramid
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/06—Indicating or recording means; Sensing means
- G01N2203/0617—Electrical or magnetic indicating, recording or sensing means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0058—Kind of property studied
- G01N2203/0076—Hardness, compressibility or resistance to crushing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/0202—Control of the test
- G01N2203/0212—Theories, calculations
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/025—Geometry of the test
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/0202—Control of the test
- G01N2203/021—Treatment of the signal; Calibration
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0014—Type of force applied
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/08—Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/32—Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/20—Investigating strength properties of solid materials by application of mechanical stress by applying steady bending forces
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by the preceding groups
- G01N33/44—Investigating or analysing materials by specific methods not covered by the preceding groups resins; rubber; leather
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by the preceding groups
- G01N33/38—Investigating or analysing materials by specific methods not covered by the preceding groups concrete; ceramics; glass; bricks
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress in general
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B3/00—Instruments as specified in the subgroups and characterised by the use of mechanical measuring means
- G01B3/002—Details
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N11/00—Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B21/00—Measuring arrangements or details thereof in so far as they are not adapted to particular types of measuring means of the preceding groups
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR
- G01M5/00—Investigating the elasticity of structures, e.g. deflection of bridges, air-craft wings
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B5/00—Measuring arrangements characterised by the use of mechanical means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L5/00—Apparatus for, or methods of, measuring force, e.g. due to impact, work, mechanical power, or torque, adapted for special purposes
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Motra et al. | Assessment of strain measurement techniques to characterise mechanical properties of structural steel | |
Banholzer et al. | Analytical evaluation of pull-out tests—the inverse problem | |
Allaer et al. | Direct fracture toughness determination of a ductile epoxy polymer from digital image correlation measurements on a single edge notched bending sample | |
Bao et al. | Fatigue, magnetic and mechanical hysteresis | |
Hajy Akbary et al. | Elastic strain measurement of miniature tensile specimens | |
Motra et al. | The Monte Carlo Method for evaluating measurement uncertainty: Application for determining the properties of materials | |
CN108548720B (en) | Method for obtaining ductile material J resistance curve by I-type crack elastoplasticity theoretical formula | |
Zhang et al. | Laboratory testing and numerical modelling of pin-ended hot-rolled stainless steel angle section columns failing by flexural-torsional buckling | |
Kuhinek et al. | Measurement uncertainty in testing of uniaxial compressive strength and deformability of rock samples | |
Sun et al. | Interpretation of non-conventional miniaturized creep test: derivation of equivalent gauge length | |
Tian et al. | Experimental study on bond performance and damage detection of corroded reinforced concrete specimens | |
Garcia et al. | Back-face strain compliance relation for SEN (B) specimens for wide range in crack lengths | |
Duncan | Test methods for determining hyperelastic properties of flexible adhesives. | |
CN107748026A (en) | A kind of synchronous across yardstick residual stress detection method | |
Roebuck et al. | Data acquisition and analysis of tensile properties for metal matrix composites | |
Lemanski et al. | Experimental characterisation of aluminium 6082 at varying temperature and strain rate | |
Germak et al. | Traceability in hardness measurements: from the definition to industry | |
KR20100032576A (en) | Calibration method for rounded shape indenter by using effective radius | |
Zhang et al. | The anvil effect in the spherical indentation testing of sheet metals | |
Bonora et al. | A revised approach to damage measurement based on stiffness loss technique | |
Suhartono et al. | Estimating of measurement uncertainty of tensile strength test for deformed steel bars for concrete reinforcement | |
Heckmann et al. | Evaluation of the fatigue life of AISI 347 specimens with small notches based on local strain considerations | |
Muzyka et al. | Method of Evaluating Residual Stresses in the Product Material | |
Saeed et al. | Front face strain compliance for quantification of short crack growth in fatigue testing | |
Song et al. | Springback after the lateral bending of T-section rails of work-hardening materials |