Nothing Special   »   [go: up one dir, main page]

Sharma et al., 2013 - Google Patents

Performance evaluation of TCP variants under different node speeds using OPNET simulator

Sharma et al., 2013

Document ID
4179137758885331999
Author
Sharma C
Tyagi B
Publication year
Publication venue
2013 3rd IEEE International Advance Computing Conference (IACC)

External Links

Snippet

A mobile ad-hoc network (MANET) is a self starting dynamic network comprising of mobile nodes, where each and every participant node voluntarily transmit the packets destined to some remote node using wireless (radio signal) transmission. Past research efforts have …
Continue reading at ieeexplore.ieee.org (other versions)

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic regulation in packet switching networks
    • H04L47/10Flow control or congestion control
    • H04L47/19Flow control or congestion control at layers above network layer
    • H04L47/193Flow control or congestion control at layers above network layer at transport layer, e.g. TCP related
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. van Duuren system; ARQ protocols
    • H04L1/1867Arrangements specific to the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • H04L1/1678Details of the supervisory signal the supervisory signal being transmitted together with control information where the control information is for timing, e.g. time stamps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Application independent communication protocol aspects or techniques in packet data networks
    • H04L69/16Transmission control protocol/internet protocol [TCP/IP] or user datagram protocol [UDP]
    • H04L69/163Adaptation of TCP data exchange control procedures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic regulation in packet switching networks
    • H04L47/10Flow control or congestion control
    • H04L47/26Explicit feedback to the source, e.g. choke packet
    • H04L47/263Source rate modification after feedback
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic regulation in packet switching networks
    • H04L47/10Flow control or congestion control
    • H04L47/32Packet discarding or delaying
    • H04L47/323Discarding or blocking control packets, e.g. ACK packets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing packet switching networks
    • H04L43/08Monitoring based on specific metrics
    • H04L43/0852Delays
    • H04L43/0864Round trip delays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic regulation in packet switching networks
    • H04L47/10Flow control or congestion control
    • H04L47/27Window size evaluation or update, e.g. using information derived from ACK packets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic regulation in packet switching networks
    • H04L47/10Flow control or congestion control
    • H04L47/22Traffic shaping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Application independent communication protocol aspects or techniques in packet data networks
    • H04L69/16Transmission control protocol/internet protocol [TCP/IP] or user datagram protocol [UDP]
    • H04L69/161Implementation details of TCP/IP or UDP/IP stack architecture; Specification of modified or new header fields
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/26Monitoring arrangements; Testing arrangements
    • H04L12/2602Monitoring arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/54Store-and-forward switching systems
    • H04L12/56Packet switching systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network-specific arrangements or communication protocols supporting networked applications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/14Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W28/00Network traffic or resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control

Similar Documents

Publication Publication Date Title
Waghmare et al. Comparative Analysis of different TCP variants in a wireless environment
Man et al. ImTCP: TCP with an inline measurement mechanism for available bandwidth
Sharma et al. Performance evaluation of TCP variants under different node speeds using OPNET simulator
Meher et al. Analysis and Comparison of Performance of TCP-Vegas in MANET
Bathla et al. Relative inspection of TCP variants reno, new reno, sack, vegas in AODV
Tomar et al. A Comprehensive Analysis and Comparison of TCP Tahoe, TCP Reno and TCP Lite
Yang et al. TCP bulk repeat
Leung et al. A packet-reordering solution to wireless losses in transmission control protocol
Paul et al. Comparative analysis of different TCP variants in mobile ad-hoc network
Kamboj et al. Various TCP options for congestion evasion
Unnikrishnan et al. A comprehensive analysis of TCP congestion control schemes in wireless mesh networks
Ahmed et al. Improving performance of SCTP over broadband high latency networks
Moltchanov et al. Modeling TCP SACK performance over wireless channels with semi-reliable ARQ/FEC
Pradeep et al. Comparison of drop rates in different TCP variants against various routing protocols
Leung et al. TCP-Swift: an end-host enhancement scheme for TCP over satellite IP networks
Othman et al. Analysis of TCP-Reno and TCP-Vegas over AOMDV routing protocol for mobile ad hoc network
Raimagia et al. A novel approach to enhance performance of Linux-TCP Westwood on wireless link
Bajeja et al. Performance evaluation of traditional TCP variants in wireless multihop networks
Liu et al. A extended dccp congestion control in wireless sensor networks
Xin et al. TCP performance in wireless networks with delay spike and different initial congestion window sizes
Kothari et al. Performance enhancement of SACK TCP protocol for wireless network by delaying fast recovery
Sarkar et al. Modified TCP Peach Protocol for Satellite based Networks
Yang et al. Simulation-based comparisons of solutions for TCP packet reordering in wireless networks
Yong-Min et al. Improved dccp congestion control for wireless sensor networks
Nashiry et al. Evaluation of TCP performance over mobile IP wired-cum-wireless networks