Hedstrom, 2005 - Google Patents
Question categorization for a question answering system using a vector space modelHedstrom, 2005
View PDF- Document ID
- 4106788515858511242
- Author
- Hedstrom A
- Publication year
- Publication venue
- Master's thesis, Department of Linguistics and Philology (Language Technology Programme) Uppsala University, Uppsala, Sweden
External Links
Snippet
The purpose of the thesis is to automatically assign questions into sense categories, where the sense categories are represented by predefined paraphrase sets of questions. The paraphrase sets are available for each domain in a Question Answering system. A Java …
- 238000002474 experimental method 0 abstract description 13
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/3061—Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
- G06F17/30634—Querying
- G06F17/30657—Query processing
- G06F17/30675—Query execution
- G06F17/30684—Query execution using natural language analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/3061—Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
- G06F17/30634—Querying
- G06F17/30657—Query processing
- G06F17/30675—Query execution
- G06F17/3069—Query execution using vector based model
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/3061—Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
- G06F17/30705—Clustering or classification
- G06F17/3071—Clustering or classification including class or cluster creation or modification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/3061—Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
- G06F17/30613—Indexing
- G06F17/30619—Indexing indexing structures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/3061—Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
- G06F17/30705—Clustering or classification
- G06F17/30707—Clustering or classification into predefined classes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/20—Handling natural language data
- G06F17/27—Automatic analysis, e.g. parsing
- G06F17/2705—Parsing
- G06F17/2715—Statistical methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/20—Handling natural language data
- G06F17/27—Automatic analysis, e.g. parsing
- G06F17/2765—Recognition
- G06F17/2775—Phrasal analysis, e.g. finite state techniques, chunking
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/20—Handling natural language data
- G06F17/27—Automatic analysis, e.g. parsing
- G06F17/2785—Semantic analysis
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
- G10L15/00—Speech recognition
- G10L15/08—Speech classification or search
- G10L15/18—Speech classification or search using natural language modelling
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/68—Methods or arrangements for recognition using electronic means using sequential comparisons of the image signals with a plurality of references in which the sequence of the image signals or the references is relevant, e.g. addressable memory
- G06K9/6807—Dividing the references in groups prior to recognition, the recognition taking place in steps; Selecting relevant dictionaries
- G06K9/6842—Dividing the references in groups prior to recognition, the recognition taking place in steps; Selecting relevant dictionaries according to the linguistic properties, e.g. English, German
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S707/00—Data processing: database and file management or data structures
- Y10S707/99931—Database or file accessing
- Y10S707/99933—Query processing, i.e. searching
- Y10S707/99935—Query augmenting and refining, e.g. inexact access
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Moldovan et al. | Using wordnet and lexical operators to improve internet searches | |
US7296009B1 (en) | Search system | |
Jones | Learning to extract entities from labeled and unlabeled text | |
Ramprasath et al. | A survey on question answering system | |
Etaiwi et al. | Statistical Arabic name entity recognition approaches: A survey | |
CN102214189A (en) | Data mining-based word usage knowledge acquisition system and method | |
CN112000802A (en) | Software defect positioning method based on similarity integration | |
CN112380848B (en) | Text generation method, device, equipment and storage medium | |
CN109284389A (en) | A kind of information processing method of text data, device | |
Amaral et al. | Priberam’s question answering system for Portuguese | |
Hammo et al. | Experimenting with a question answering system for the Arabic language | |
McInnes | Extending the Log Likelihood Measure to Improve Collection Identification | |
Mollaei et al. | Question classification in Persian language based on conditional random fields | |
Hakkani-Tur et al. | Statistical sentence extraction for information distillation | |
Hirpassa | Information extraction system for Amharic text | |
Abuleil et al. | Extracting an Arabic lexicon from Arabic newspaper text | |
Hedstrom | Question categorization for a question answering system using a vector space model | |
Benajiba et al. | Arabic question answering | |
Li et al. | Question classification using multiple classifiers | |
Wen | Text mining using HMM and PMM | |
Lin et al. | Support vector machines for text categorization in Chinese question classification | |
Lin et al. | Chinese Question Classification Using Alternating and Iterative One-against-One Algorithm. | |
Saneifar et al. | From terminology extraction to terminology validation: an approach adapted to log files | |
Nikolić et al. | Modelling the System of Receiving Quick Answers for e-Government Services: Study for the Crime Domain in the Republic of Serbia | |
Colton | Text classification using Python |