Araújo et al., 2012 - Google Patents
Hybrid morphological methodology for software development cost estimationAraújo et al., 2012
View PDF- Document ID
- 4098193247729283987
- Author
- Araújo R
- Soares S
- Oliveira A
- Publication year
- Publication venue
- Expert Systems with Applications
External Links
Snippet
In this paper we propose a hybrid methodology to design morphological-rank-linear (MRL) perceptrons in the problem of software development cost estimation (SDCE). In this methodology, we use a modified genetic algorithm (MGA) to optimize the parameters of the …
- 238000000034 method 0 title abstract description 59
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06Q—DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management, e.g. organising, planning, scheduling or allocating time, human or machine resources; Enterprise planning; Organisational models
- G06Q10/063—Operations research or analysis
- G06Q10/0635—Risk analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06Q—DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management, e.g. organising, planning, scheduling or allocating time, human or machine resources; Enterprise planning; Organisational models
- G06Q10/063—Operations research or analysis
- G06Q10/0637—Strategic management or analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N99/00—Subject matter not provided for in other groups of this subclass
- G06N99/005—Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/02—Computer systems based on biological models using neural network models
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computer systems utilising knowledge based models
- G06N5/02—Knowledge representation
- G06N5/022—Knowledge engineering, knowledge acquisition
- G06N5/025—Extracting rules from data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/02—Computer systems based on biological models using neural network models
- G06N3/04—Architectures, e.g. interconnection topology
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/12—Computer systems based on biological models using genetic models
- G06N3/126—Genetic algorithms, i.e. information processing using digital simulations of the genetic system
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computer systems utilising knowledge based models
- G06N5/04—Inference methods or devices
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06Q—DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation, e.g. linear programming, "travelling salesman problem" or "cutting stock problem"
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06Q—DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q40/00—Finance; Insurance; Tax strategies; Processing of corporate or income taxes
- G06Q40/08—Insurance, e.g. risk analysis or pensions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/50—Computer-aided design
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/10—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/30—Medical informatics, i.e. computer-based analysis or dissemination of patient or disease data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N7/00—Computer systems based on specific mathematical models
- G06N7/005—Probabilistic networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06Q—DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce, e.g. shopping or e-commerce
- G06Q30/02—Marketing, e.g. market research and analysis, surveying, promotions, advertising, buyer profiling, customer management or rewards; Price estimation or determination
- G06Q30/0202—Market predictions or demand forecasting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06Q—DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Systems or methods specially adapted for a specific business sector, e.g. utilities or tourism
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Araújo et al. | Hybrid morphological methodology for software development cost estimation | |
Azadeh et al. | Integration of genetic algorithm, computer simulation and design of experiments for forecasting electrical energy consumption | |
Naderi et al. | Novel statistical forecasting models for crude oil price, gas price, and interest rate based on meta-heuristic bat algorithm | |
Behnamian et al. | Development of a PSO–SA hybrid metaheuristic for a new comprehensive regression model to time-series forecasting | |
Pati et al. | A comparison among ARIMA, BP-NN, and MOGA-NN for software clone evolution prediction | |
Malhotra¹ et al. | Software maintainability prediction using machine learning algorithms | |
Araújo et al. | A shift-invariant morphological system for software development cost estimation | |
Horng et al. | Evolutionary algorithm assisted by surrogate model in the framework of ordinal optimization and optimal computing budget allocation | |
Araújo et al. | An evolutionary morphological approach for software development cost estimation | |
Aleti et al. | Test data generation with a Kalman filter-based adaptive genetic algorithm | |
WO2020198520A1 (en) | Process and system including an optimization engine with evolutionary surrogate-assisted prescriptions | |
Jodpimai et al. | Estimating software effort with minimum features using neural functional approximation | |
Azzouz et al. | Steady state IBEA assisted by MLP neural networks for expensive multi-objective optimization problems | |
Chaves-González et al. | Teaching learning based optimization with Pareto tournament for the multiobjective software requirements selection | |
Dash et al. | MDHS–LPNN: a hybrid FOREX predictor model using a Legendre polynomial neural network with a modified differential harmony search technique | |
Mensah et al. | Investigating the significance of the bellwether effect to improve software effort prediction: Further empirical study | |
Pai et al. | Software effort estimation using a neural network ensemble | |
Gupta et al. | DNN-based policies for stochastic AC OPF | |
Rashid et al. | An Artificial Neural Network-Based Model for Effective Software Development Effort Estimation | |
Ludermir et al. | Particle swarm optimization of MLP for the identification of factors related to common mental disorders | |
Sun et al. | Sparse deep learning: A new framework immune to local traps and miscalibration | |
Setiono et al. | Software effort prediction using regression rule extraction from neural networks | |
Lei et al. | A novel time-delay neural grey model and its applications | |
Gupta et al. | Two weighted fuzzy goal programming methods to solve multiobjective goal programming problem | |
Araujo et al. | Hybrid intelligent design of morphological-rank-linear perceptrons for software development cost estimation |