OpenAI o3-mini-high is the same model as o3-mini with reasoning_effort set to high.
o3-mini is a cost-efficient language model optimized for STEM reasoning tasks, particularly excelling in science, mathematics, and coding. The model features three adjustable reasoning effort levels and supports key developer capabilities including function calling, structured outputs, and streaming, though it does not include vision processing capabilities.
The model demonstrates significant improvements over its predecessor, with expert testers preferring its responses 56% of the time and noting a 39% reduction in major errors on complex questions. With medium reasoning effort settings, o3-mini matches the performance of the larger o1 model on challenging reasoning evaluations like AIME and GPQA, while maintaining lower latency and cost.
DeepSeek-V3 is the latest model from the DeepSeek team, building upon the instruction following and coding abilities of the previous versions. Pre-trained on nearly 15 trillion tokens, the reported evaluations reveal that the model outperforms other open-source models and rivals leading closed-source models.
For model details, please visit the DeepSeek-V3 repo for more information, or see the launch announcement.
Liquid's 40.3B Mixture of Experts (MoE) model. Liquid Foundation Models (LFMs) are large neural networks built with computational units rooted in dynamic systems.
LFMs are general-purpose AI models that can be used to model any kind of sequential data, including video, audio, text, time series, and signals.
See the launch announcement for benchmarks and more info.