Nothing Special   »   [go: up one dir, main page]

login
Search: a329699 -id:a329699
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of excursions of length n with Motzkin-steps avoiding the consecutive steps UH, HH and HD.
+10
1
1, 1, 1, 2, 3, 5, 9, 16, 30, 56, 108, 208, 409, 805, 1606, 3211, 6479, 13108, 26691, 54499, 111808, 229983, 474787, 982528, 2039143, 4241187, 8842137, 18469760, 38657209, 81047625, 170212312, 358013615, 754140328, 1590709427, 3359666293, 7104369046, 15040357081, 31875827699
OFFSET
0,4
COMMENTS
The Motzkin step set is U=(1,1), H=(1,0) and D=(1,-1). An excursion is a path starting at (0,0), ending at (n,0) and never crossing the x-axis, i.e., staying at nonnegative altitude.
LINKS
Andrei Asinowski, Cyril Banderier, and Valerie Roitner, Generating functions for lattice paths with several forbidden patterns, preprint, 2019.
FORMULA
G.f.: (1+t)*(1-t^3-sqrt(1-4t^2-2t^3+t^6))/(2t^2).
EXAMPLE
a(4)=3 since we have 3 excursions of length 4, namely UUDD, UDUD and HUDH.
CROSSREFS
Cf. A329699.
KEYWORD
nonn,walk
AUTHOR
Valerie Roitner, Dec 16 2019
STATUS
approved

Search completed in 0.006 seconds