Nothing Special   »   [go: up one dir, main page]

login
Search: a109057 -id:a109057
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number A(n,k) of n-tuples (p_1, p_2, ..., p_n) of positive integers such that p_{i-1} <= p_i <= k^(i-1); square array A(n,k), n>=0, k>=0, read by antidiagonals.
+10
11
1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 3, 7, 1, 0, 1, 1, 4, 24, 44, 1, 0, 1, 1, 5, 58, 541, 516, 1, 0, 1, 1, 6, 115, 3236, 35649, 11622, 1, 0, 1, 1, 7, 201, 12885, 713727, 6979689, 512022, 1, 0, 1, 1, 8, 322, 39656, 7173370, 627642640, 4085743032, 44588536, 1, 0
OFFSET
0,13
LINKS
EXAMPLE
A(2,3) = 3: (1,1), (1,2), (1,3).
A(3,2) = 7: (1,1,1), (1,1,2), (1,1,3), (1,1,4), (1,2,2), (1,2,3), (1,2,4).
A(3,3) = 24: (1,1,1), (1,1,2), (1,1,3), (1,1,4), (1,1,5), (1,1,6), (1,1,7), (1,1,8), (1,1,9), (1,2,2), (1,2,3), (1,2,4), (1,2,5), (1,2,6), (1,2,7), (1,2,8), (1,2,9), (1,3,3), (1,3,4), (1,3,5), (1,3,6), (1,3,7), (1,3,8), (1,3,9).
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 1, 7, 24, 58, 115, 201, ...
0, 1, 44, 541, 3236, 12885, 39656, ...
0, 1, 516, 35649, 713727, 7173370, 46769781, ...
0, 1, 11622, 6979689, 627642640, 19940684251, 330736663032, ...
MAPLE
A:= proc(n, k) option remember; `if`(n=0, 1, -add(
A(j, k)*(-1)^(n-j)*binomial(k^j, n-j), j=0..n-1))
end:
seq(seq(A(n, d-n), n=0..d), d=0..12);
MATHEMATICA
A[n_, k_] := A[n, k] = If[n==0, 1, -Sum[A[j, k]*(-1)^(n-j)*Binomial[If[j==0, 1, k^j], n-j], {j, 0, n-1}]];
Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Sep 21 2022, after Alois P. Heinz *)
CROSSREFS
Rows n=1-4 give: A000012, A001477, A081436(k-1) for k>0, A354608.
Main diagonal gives A355561.
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Jul 07 2022
STATUS
approved
To compute a(n) we first write down 3^n 1's in a row. Each row takes the rightmost 3rd part of the previous row and each element in it equals sum of the elements of the previous row starting with the first of the rightmost 3rd part. The single element in the last row is a(n).
+10
9
1, 1, 3, 24, 541, 35649, 6979689, 4085743032, 7166723910237, 37698139930450365, 594816080266215640710, 28154472624850002001979592, 3997853576535778666975681355079, 1703042427700923785323670557504832751, 2176429411666209822350337722381643148477248
OFFSET
0,3
COMMENTS
Comment from Franklin T. Adams-Watters, Jul 13 2006: This is the number of subpartitions of the sequence 3^n-1. As such it can also be computed adding forward, with 3^n terms in the n-th line:
1...........................................................................
1.1 1.......................................................................
1.2.3.3..3..3..3..3..3......................................................
1.3.6.9.12.15.18.21.24.24.24.24.24.24.24.24.24.24.24.24.24.24.24.24.24.24.24
LINKS
EXAMPLE
For example, for n=3 the array looks like this:
1..1..1..1..1........1..1..1..1..1..1..1..1..1..1
........................1..2..3..4..5..6..7..8..9
..........................................7.15.24
...............................................24
Therefore a(3)=24.
MAPLE
proc(n::nonnegint) local f, a; if n=0 or n=1 then return 1; end if; f:=L->[seq(add(L[i], i=2*nops(L)/3+1..j), j=2*nops(L)/3+1..nops(L))]; a:=f([seq(1, j=1..3^n)]); while nops(a)>3 do a:=f(a) end do; a[3]; end proc;
MATHEMATICA
A[n_, k_] := A[n, k] = If[n == 0, 1, -Sum[A[j, k]*(-1)^(n - j)*Binomial[If[j == 0, 1, k^j], n - j], {j, 0, n - 1}]];
a[n_] := A[n, 3];
Table[a[n], {n, 0, 14}] (* Jean-François Alcover, Apr 01 2024, after Alois P. Heinz in A355576 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Augustine O. Munagi, Jun 17 2005
EXTENSIONS
More terms from Paul D. Hanna
STATUS
approved
To compute a(n) we first write down 9^n 1's in a row. Each row takes the rightmost 9th part of the previous row and each element in it equals sum of the elements of the previous row starting with the first of the rightmost 9th part. The single element in the last row is a(n).
+10
9
1, 1, 9, 693, 476121, 2940705927, 163444130390781, 81756588582353417271, 368059416198072536171078649, 14912674110246473369128526689667934, 5437955149300119215042866669813503145575607, 17846712348533391270843269203829434120473501691723788
OFFSET
0,3
LINKS
EXAMPLE
For example, for n=3 the array, from 2nd row, follows:
1..2..3.....70..71..72..73..74..75..76..77..78..79..80..81
........................73.147.222.298.375.453.532.612.693
.......................................................693
Therefore a(3)=693.
MAPLE
proc(n::nonnegint) local f, a; if n=0 or n=1 then return 1; end if; f:=L->[seq(add(L[i], i=8*nops(L)/9+1..j), j=8*nops(L)/9+1..nops(L))]; a:=f([seq(1, j=1..9^n)]); while nops(a)>9 do a:=f(a) end do; a[9]; end proc;
MATHEMATICA
A[n_, k_] := A[n, k] = If[n == 0, 1, -Sum[A[j, k]*(-1)^(n - j)* Binomial[If[j == 0, 1, k^j], n - j], {j, 0, n - 1}]];
a[n_] := A[n, 9];
Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Apr 01 2024, after Alois P. Heinz in A355576 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Augustine O. Munagi, Jun 17 2005
EXTENSIONS
More terms from Alois P. Heinz, Jul 06 2022
STATUS
approved
To compute a(n) we first write down 4^n 1's in a row. Each row takes the rightmost 4th part of the previous row and each element in it equals sum of the elements of the previous row starting with the first of the rightmost 4th part. The single element in the last row is a(n).
+10
8
1, 1, 4, 58, 3236, 713727, 627642640, 2205897096672, 31004442653082720, 1743005531132374350208, 391947224244531572312436328, 352545281714327012273215572739472, 1268416358395092955994185170741834144224, 18254446075150458724007419019753847268167282688
OFFSET
0,3
LINKS
EXAMPLE
For example, for n=3 the array looks like this:
1..1.....1..1..1..1..1..1..1..1..1..1..1..1..1..1..1..1..1
............1..2..3..4..5..6..7..8..9.10.11.12.13.14.15.16
...............................................13.27.42.58
........................................................58
Therefore a(4)=58.
MAPLE
proc(n::nonnegint) local f, a; if n=0 or n=1 then return 1; end if; f:=L->[seq(add(L[i], i=3*nops(L)/4+1..j), j=3*nops(L)/4+1..nops(L))]; a:=f([seq(1, j=1..4^n)]); while nops(a)>4 do a:=f(a) end do; a[4]; end proc;
MATHEMATICA
A[n_, k_] := A[n, k] = If[n == 0, 1, -Sum[A[j, k]*(-1)^(n - j)* Binomial[If[j == 0, 1, k^j], n - j], {j, 0, n - 1}]];
a[n_] := A[n, 4];
Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Apr 01 2024, after Alois P. Heinz in A355576 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Augustine O. Munagi, Jun 17 2005
EXTENSIONS
More terms from Alois P. Heinz, Jul 06 2022
STATUS
approved
To compute a(n) we first write down 6^n 1's in a row. Each row takes the rightmost 6th part of the previous row and each element in it equals sum of the elements of the previous row starting with the first of the rightmost 6th part. The single element in the last row is a(n).
+10
8
1, 1, 6, 201, 39656, 46769781, 330736663032, 14031372754200653, 3571582237574150514024, 5454701025672508908169570740, 49984143782624329482858175943128416, 2748177454593265010973723857947479180947553, 906585004703475512437226615670665677815744239819376
OFFSET
0,3
LINKS
EXAMPLE
For example, for n=3 the array, from 2nd row, follows:
1..2..3.....25..26..27..28..29..30..31..32..33..34..35..36
....................................31..63..96.130.165.201
.......................................................201
Therefore a(3)=201.
MAPLE
proc(n::nonnegint) local f, a; if n=0 or n=1 then return 1; end if; f:=L->[seq(add(L[i], i=5*nops(L)/6+1..j), j=5*nops(L)/6+1..nops(L))]; a:=f([seq(1, j=1..6^n)]); while nops(a)>6 do a:=f(a) end do; a[6]; end proc;
MATHEMATICA
A[n_, k_] := A[n, k] = If[n == 0, 1, -Sum[A[j, k]*(-1)^(n - j)* Binomial[If[j == 0, 1, k^j], n - j], {j, 0, n - 1}]];
a[n_] := A[n, 6];
Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Apr 01 2024, after Alois P. Heinz in A355576 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Augustine O. Munagi, Jun 17 2005
EXTENSIONS
More terms from Alois P. Heinz, Jul 06 2022
STATUS
approved
To compute a(n) we first write down 7^n 1's in a row. Each row takes the rightmost 7th part of the previous row and each element in it equals sum of the elements of the previous row starting with the first of the rightmost 7th part. The single element in the last row is a(n).
+10
8
1, 1, 7, 322, 102249, 226742516, 3518406903403, 382149784071841422, 290546585470549214822793, 1546306129153609960601346281449, 57606719909341067627899562630623352149, 15022729501707009545842655841005666468590455864, 27423481304702360472157221630747597794702587610760693525
OFFSET
0,3
LINKS
EXAMPLE
For example, for n=3 the array, from 2nd row, follows:
1..2..3.....38..39..40..41..42..43..44..45..46..47..48..49
................................43..87.132.178.225.273.322
.......................................................322
Therefore a(3)=322.
MAPLE
proc(n::nonnegint) local f, a; if n=0 or n=1 then return 1; end if; f:=L->[seq(add(L[i], i=6*nops(L)/7+1..j), j=6*nops(L)/7+1..nops(L))]; a:=f([seq(1, j=1..7^n)]); while nops(a)>7 do a:=f(a) end do; a[7]; end proc;
MATHEMATICA
A[n_, k_] := A[n, k] = If[n == 0, 1, -Sum[A[j, k]*(-1)^(n - j)* Binomial[If[j == 0, 1, k^j], n - j], {j, 0, n - 1}]];
a[n_] := A[n, 7];
Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Apr 01 2024, after_Alois P. Heinz_ in A355576 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Augustine O. Munagi, Jun 17 2005
EXTENSIONS
More terms from Alois P. Heinz, Jul 06 2022
STATUS
approved
To compute a(n) we first write down 8^n 1's in a row. Each row takes the rightmost 8th part of the previous row and each element in it equals sum of the elements of the previous row starting with the first of the rightmost 8th part. The single element in the last row is a(n).
+10
8
1, 1, 8, 484, 231736, 886208954, 27106585594040, 6632714300472863716, 12983632019302863224103688, 203325054125533158416534341556735, 25472733809776289439071490656049076425792, 25529963965104465687252347321830255523307055463168
OFFSET
0,3
LINKS
EXAMPLE
For example, for n=3 the array, from 2nd row, follows:
1..2..3.....53..54..55..56..57..58..59..60..61..62..63..64
............................57.115.174.234.295.357.420.484
.......................................................484
Therefore a(3)=484.
MAPLE
proc(n::nonnegint) local f, a; if n=0 or n=1 then return 1; end if; f:=L->[seq(add(L[i], i=7*nops(L)/8+1..j), j=7*nops(L)/8+1..nops(L))]; a:=f([seq(1, j=1..8^n)]); while nops(a)>8 do a:=f(a) end do; a[8]; end proc;
MATHEMATICA
A[n_, k_] := A[n, k] = If[n == 0, 1, -Sum[A[j, k]*(-1)^(n - j)* Binomial[If[j == 0, 1, k^j], n - j], {j, 0, n - 1}]];
a[n_] := A[n, 8];
Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Apr 01 2024, after Alois P. Heinz in A355576 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Augustine O. Munagi, Jun 17 2005
EXTENSIONS
More terms from Alois P. Heinz, Jul 06 2022
STATUS
approved

Search completed in 0.009 seconds