Displaying 1-7 of 7 results found.
page
1
Number A(n,k) of n-tuples (p_1, p_2, ..., p_n) of positive integers such that p_{i-1} <= p_i <= k^(i-1); square array A(n,k), n>=0, k>=0, read by antidiagonals.
+10
11
1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 3, 7, 1, 0, 1, 1, 4, 24, 44, 1, 0, 1, 1, 5, 58, 541, 516, 1, 0, 1, 1, 6, 115, 3236, 35649, 11622, 1, 0, 1, 1, 7, 201, 12885, 713727, 6979689, 512022, 1, 0, 1, 1, 8, 322, 39656, 7173370, 627642640, 4085743032, 44588536, 1, 0
EXAMPLE
A(2,3) = 3: (1,1), (1,2), (1,3).
A(3,2) = 7: (1,1,1), (1,1,2), (1,1,3), (1,1,4), (1,2,2), (1,2,3), (1,2,4).
A(3,3) = 24: (1,1,1), (1,1,2), (1,1,3), (1,1,4), (1,1,5), (1,1,6), (1,1,7), (1,1,8), (1,1,9), (1,2,2), (1,2,3), (1,2,4), (1,2,5), (1,2,6), (1,2,7), (1,2,8), (1,2,9), (1,3,3), (1,3,4), (1,3,5), (1,3,6), (1,3,7), (1,3,8), (1,3,9).
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 1, 7, 24, 58, 115, 201, ...
0, 1, 44, 541, 3236, 12885, 39656, ...
0, 1, 516, 35649, 713727, 7173370, 46769781, ...
0, 1, 11622, 6979689, 627642640, 19940684251, 330736663032, ...
MAPLE
A:= proc(n, k) option remember; `if`(n=0, 1, -add(
A(j, k)*(-1)^(n-j)*binomial(k^j, n-j), j=0..n-1))
end:
seq(seq(A(n, d-n), n=0..d), d=0..12);
MATHEMATICA
A[n_, k_] := A[n, k] = If[n==0, 1, -Sum[A[j, k]*(-1)^(n-j)*Binomial[If[j==0, 1, k^j], n-j], {j, 0, n-1}]];
To compute a(n) we first write down 3^n 1's in a row. Each row takes the rightmost 3rd part of the previous row and each element in it equals sum of the elements of the previous row starting with the first of the rightmost 3rd part. The single element in the last row is a(n).
+10
9
1, 1, 3, 24, 541, 35649, 6979689, 4085743032, 7166723910237, 37698139930450365, 594816080266215640710, 28154472624850002001979592, 3997853576535778666975681355079, 1703042427700923785323670557504832751, 2176429411666209822350337722381643148477248
COMMENTS
Comment from Franklin T. Adams-Watters, Jul 13 2006: This is the number of subpartitions of the sequence 3^n-1. As such it can also be computed adding forward, with 3^n terms in the n-th line:
1...........................................................................
1.1 1.......................................................................
1.2.3.3..3..3..3..3..3......................................................
1.3.6.9.12.15.18.21.24.24.24.24.24.24.24.24.24.24.24.24.24.24.24.24.24.24.24
EXAMPLE
For example, for n=3 the array looks like this:
1..1..1..1..1........1..1..1..1..1..1..1..1..1..1
........................1..2..3..4..5..6..7..8..9
..........................................7.15.24
...............................................24
Therefore a(3)=24.
MAPLE
proc(n::nonnegint) local f, a; if n=0 or n=1 then return 1; end if; f:=L->[seq(add(L[i], i=2*nops(L)/3+1..j), j=2*nops(L)/3+1..nops(L))]; a:=f([seq(1, j=1..3^n)]); while nops(a)>3 do a:=f(a) end do; a[3]; end proc;
MATHEMATICA
A[n_, k_] := A[n, k] = If[n == 0, 1, -Sum[A[j, k]*(-1)^(n - j)*Binomial[If[j == 0, 1, k^j], n - j], {j, 0, n - 1}]];
a[n_] := A[n, 3];
To compute a(n) we first write down 9^n 1's in a row. Each row takes the rightmost 9th part of the previous row and each element in it equals sum of the elements of the previous row starting with the first of the rightmost 9th part. The single element in the last row is a(n).
+10
9
1, 1, 9, 693, 476121, 2940705927, 163444130390781, 81756588582353417271, 368059416198072536171078649, 14912674110246473369128526689667934, 5437955149300119215042866669813503145575607, 17846712348533391270843269203829434120473501691723788
EXAMPLE
For example, for n=3 the array, from 2nd row, follows:
1..2..3.....70..71..72..73..74..75..76..77..78..79..80..81
........................73.147.222.298.375.453.532.612.693
.......................................................693
Therefore a(3)=693.
MAPLE
proc(n::nonnegint) local f, a; if n=0 or n=1 then return 1; end if; f:=L->[seq(add(L[i], i=8*nops(L)/9+1..j), j=8*nops(L)/9+1..nops(L))]; a:=f([seq(1, j=1..9^n)]); while nops(a)>9 do a:=f(a) end do; a[9]; end proc;
MATHEMATICA
A[n_, k_] := A[n, k] = If[n == 0, 1, -Sum[A[j, k]*(-1)^(n - j)* Binomial[If[j == 0, 1, k^j], n - j], {j, 0, n - 1}]];
a[n_] := A[n, 9];
To compute a(n) we first write down 4^n 1's in a row. Each row takes the rightmost 4th part of the previous row and each element in it equals sum of the elements of the previous row starting with the first of the rightmost 4th part. The single element in the last row is a(n).
+10
8
1, 1, 4, 58, 3236, 713727, 627642640, 2205897096672, 31004442653082720, 1743005531132374350208, 391947224244531572312436328, 352545281714327012273215572739472, 1268416358395092955994185170741834144224, 18254446075150458724007419019753847268167282688
EXAMPLE
For example, for n=3 the array looks like this:
1..1.....1..1..1..1..1..1..1..1..1..1..1..1..1..1..1..1..1
............1..2..3..4..5..6..7..8..9.10.11.12.13.14.15.16
...............................................13.27.42.58
........................................................58
Therefore a(4)=58.
MAPLE
proc(n::nonnegint) local f, a; if n=0 or n=1 then return 1; end if; f:=L->[seq(add(L[i], i=3*nops(L)/4+1..j), j=3*nops(L)/4+1..nops(L))]; a:=f([seq(1, j=1..4^n)]); while nops(a)>4 do a:=f(a) end do; a[4]; end proc;
MATHEMATICA
A[n_, k_] := A[n, k] = If[n == 0, 1, -Sum[A[j, k]*(-1)^(n - j)* Binomial[If[j == 0, 1, k^j], n - j], {j, 0, n - 1}]];
a[n_] := A[n, 4];
To compute a(n) we first write down 6^n 1's in a row. Each row takes the rightmost 6th part of the previous row and each element in it equals sum of the elements of the previous row starting with the first of the rightmost 6th part. The single element in the last row is a(n).
+10
8
1, 1, 6, 201, 39656, 46769781, 330736663032, 14031372754200653, 3571582237574150514024, 5454701025672508908169570740, 49984143782624329482858175943128416, 2748177454593265010973723857947479180947553, 906585004703475512437226615670665677815744239819376
EXAMPLE
For example, for n=3 the array, from 2nd row, follows:
1..2..3.....25..26..27..28..29..30..31..32..33..34..35..36
....................................31..63..96.130.165.201
.......................................................201
Therefore a(3)=201.
MAPLE
proc(n::nonnegint) local f, a; if n=0 or n=1 then return 1; end if; f:=L->[seq(add(L[i], i=5*nops(L)/6+1..j), j=5*nops(L)/6+1..nops(L))]; a:=f([seq(1, j=1..6^n)]); while nops(a)>6 do a:=f(a) end do; a[6]; end proc;
MATHEMATICA
A[n_, k_] := A[n, k] = If[n == 0, 1, -Sum[A[j, k]*(-1)^(n - j)* Binomial[If[j == 0, 1, k^j], n - j], {j, 0, n - 1}]];
a[n_] := A[n, 6];
To compute a(n) we first write down 7^n 1's in a row. Each row takes the rightmost 7th part of the previous row and each element in it equals sum of the elements of the previous row starting with the first of the rightmost 7th part. The single element in the last row is a(n).
+10
8
1, 1, 7, 322, 102249, 226742516, 3518406903403, 382149784071841422, 290546585470549214822793, 1546306129153609960601346281449, 57606719909341067627899562630623352149, 15022729501707009545842655841005666468590455864, 27423481304702360472157221630747597794702587610760693525
EXAMPLE
For example, for n=3 the array, from 2nd row, follows:
1..2..3.....38..39..40..41..42..43..44..45..46..47..48..49
................................43..87.132.178.225.273.322
.......................................................322
Therefore a(3)=322.
MAPLE
proc(n::nonnegint) local f, a; if n=0 or n=1 then return 1; end if; f:=L->[seq(add(L[i], i=6*nops(L)/7+1..j), j=6*nops(L)/7+1..nops(L))]; a:=f([seq(1, j=1..7^n)]); while nops(a)>7 do a:=f(a) end do; a[7]; end proc;
MATHEMATICA
A[n_, k_] := A[n, k] = If[n == 0, 1, -Sum[A[j, k]*(-1)^(n - j)* Binomial[If[j == 0, 1, k^j], n - j], {j, 0, n - 1}]];
a[n_] := A[n, 7];
To compute a(n) we first write down 8^n 1's in a row. Each row takes the rightmost 8th part of the previous row and each element in it equals sum of the elements of the previous row starting with the first of the rightmost 8th part. The single element in the last row is a(n).
+10
8
1, 1, 8, 484, 231736, 886208954, 27106585594040, 6632714300472863716, 12983632019302863224103688, 203325054125533158416534341556735, 25472733809776289439071490656049076425792, 25529963965104465687252347321830255523307055463168
EXAMPLE
For example, for n=3 the array, from 2nd row, follows:
1..2..3.....53..54..55..56..57..58..59..60..61..62..63..64
............................57.115.174.234.295.357.420.484
.......................................................484
Therefore a(3)=484.
MAPLE
proc(n::nonnegint) local f, a; if n=0 or n=1 then return 1; end if; f:=L->[seq(add(L[i], i=7*nops(L)/8+1..j), j=7*nops(L)/8+1..nops(L))]; a:=f([seq(1, j=1..8^n)]); while nops(a)>8 do a:=f(a) end do; a[8]; end proc;
MATHEMATICA
A[n_, k_] := A[n, k] = If[n == 0, 1, -Sum[A[j, k]*(-1)^(n - j)* Binomial[If[j == 0, 1, k^j], n - j], {j, 0, n - 1}]];
a[n_] := A[n, 8];
Search completed in 0.009 seconds
|