Nothing Special   »   [go: up one dir, main page]

login
Search: a049352 -id:a049352
     Sort: relevance | references | number | modified | created      Format: long | short | data
Row sums of triangle A049352.
+20
6
1, 1, 5, 33, 273, 2721, 31701, 421905, 6302913, 104270913, 1889862021, 37204038081, 789866524305, 17977594555233, 436435929785493, 11251798888929201, 306889765901872641, 8825681949708120705, 266828094135981378693, 8458295877281844310113
OFFSET
0,3
LINKS
W. Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
FORMULA
E.g.f. exp(p(x)) with p(x) := x*(3-3*x+x^2)/(3*(1-x)^3) (E.g.f. first column of A049352).
a(n) ~ n^(n-1/8)/2 * exp(-1/4 + 5*n^(1/4)/24 + sqrt(n)/2 + 4*n^(3/4)/3 - n). - Vaclav Kotesovec, Oct 23 2017
E.g.f.: Sum_{n>=0} ( Integral 1/(1-x)^4 dx )^n / n!, where the constant of integration is taken to be zero. - Paul D. Hanna, Apr 27 2019
MAPLE
a:= proc(n) option remember; `if`(n=0, 1, add(
binomial(n-1, j-1)*(j+2)!/6*a(n-j), j=1..n))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Aug 01 2017
MATHEMATICA
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n-1, j-1]*(j+2)!/6*a[n-j], {j, 1, n}];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jun 04 2018, after Alois P. Heinz *)
CROSSREFS
Cf. A049352.
KEYWORD
nonn
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Aug 01 2017
STATUS
approved
Partition number array, called M31(4), related to A049352(n,m)= |S1(4;n,m)| (generalized Stirling triangle).
+20
4
1, 4, 1, 20, 12, 1, 120, 80, 48, 24, 1, 840, 600, 800, 200, 240, 40, 1, 6720, 5040, 7200, 4000, 1800, 4800, 960, 400, 720, 60, 1, 60480, 47040, 70560, 84000, 17640, 50400, 28000, 33600, 4200, 16800, 6720, 700, 1680, 84, 1, 604800, 483840, 752640, 940800, 504000, 188160
OFFSET
1,2
COMMENTS
Each partition of n, ordered as in Abramowitz-Stegun (A-St order; for the reference see A134278), is mapped to a nonnegative integer a(n,k) =: M31(4;n,k) with the k-th partition of n in A-St order.
The sequence of row lengths is A000041 (partition numbers) [1, 2, 3, 5, 7, 11, 15, 22, 30, 42,...].
Fourth member (K=4) in the family M31(K) of partition number arrays.
If M31(4;n,k) is summed over those k with fixed number of parts m one obtains the unsigned triangle |S1(4)|:= A049352.
FORMULA
a(n,k)=(n!/product(e(n,k,j)!*j!^(e(n,k,j),j=1..n))*product(|S1(4;j,1)|^e(n,k,j),j=1..n) = M3(n,k)*product(|S1(4;j,1)|^e(n,k,j),j=1..n) with |S1(4;n,1)|= A001715(n+2) = (n+2)!/3!, n>=1 and the exponent e(n,k,j) of j in the k-th partition of n in the A-St ordering of the partitions of n. M3(n,k)=A036040.
EXAMPLE
[1];[4,1];[20,12,1];[120,80,48,24,1];[840,600,800,200,240,40,1];...
a(4,3)= 48 = 3*|S1(4;2,1)|^2. The relevant partition of 4 is (2^2).
CROSSREFS
A049377 (row sums).
A144353 (M31(3) array), A144355 (M31(5) array).
KEYWORD
nonn,easy,tabf
AUTHOR
Wolfdieter Lang Oct 09 2008, Oct 28 2008
STATUS
approved
Alternating row sums of triangle A049352 (S1p(4)).
+20
1
1, 3, 9, 15, -159, -3021, -36903, -381249, -3212415, -12995901, 315857961, 12457515663, 304888863969, 6280156107315, 113710631625081, 1717208752084479, 15528594345353217, -265033870991715069, -22048996644203788215
OFFSET
1,2
FORMULA
a(n)=sum(A049352(n,m)*(-1)^(m-1),m=1..n), n>=1.
E.g.f.: 1-exp(-x*(3-3*x+x^2)/(3*(1-x)^3)). Cf. e.g.f. first column of A049352.
KEYWORD
sign,easy
AUTHOR
Wolfdieter Lang Oct 12 2007
STATUS
approved
a(n) = n!/6.
(Formerly M3566 N1445)
+10
51
1, 4, 20, 120, 840, 6720, 60480, 604800, 6652800, 79833600, 1037836800, 14529715200, 217945728000, 3487131648000, 59281238016000, 1067062284288000, 20274183401472000, 405483668029440000, 8515157028618240000, 187333454629601280000, 4308669456480829440000
OFFSET
3,2
COMMENTS
The numbers (4, 20, 120, 840, 6720, ...) arise from the divisor values in the general formula a(n) = n*(n+1)*(n+2)*(n+3)* ... *(n+k)*(n*(n+k) + (k-1)*k/6)/((k+3)!/6) (which covers the following sequences: A000578, A000537, A024166, A101094, A101097, A101102). - Alexander R. Povolotsky, May 17 2008
a(n) is also the number of decreasing 3-cycles in the decomposition of permutations as product of disjoint cycles, a(3)=1, a(4)=4, a(5)=20. - Wenjin Woan, Dec 21 2008
Equals eigensequence of triangle A130128 reflected. - Gary W. Adamson, Dec 23 2008
a(n) is the number of n-permutations having 1, 2, and 3 in three distinct cycles. - Geoffrey Critzer, Apr 26 2009
From Johannes W. Meijer, Oct 20 2009: (Start)
The asymptotic expansion of the higher order exponential integral E(x,m=1,n=4) ~ exp(-x)/x*(1 - 4/x + 20/x^2 - 120/x^3 + 840/x^4 - 6720/x^5 + 60480/x^6 - 604800/x^7 + ...) leads to the sequence given above. See A163931 and A130534 for more information.
(End)
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Somaya Barati, Beáta Bényi, Abbas Jafarzadeh, and Daniel Yaqubi, Mixed restricted Stirling numbers, arXiv:1812.02955 [math.CO], 2018.
Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), Article 00.2.4.
D. S. Mitrinovic and R. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 77 1962, 77 pp.
Alexsandar Petojevic, The Function vM_m(s; a; z) and Some Well-Known Sequences, Journal of Integer Sequences, Vol. 5 (2002), Article 02.1.7.
A. N. Stokes, Continued fraction solutions of the Riccati equation, Bull. Austral. Math. Soc. Vol. 25 (1982), 207-214.
FORMULA
a(n) = A049352(n-2, 1) (first column of triangle).
E.g.f. if offset 0: 1/(1-x)^4.
a(n) = A173333(n,3). - Reinhard Zumkeller, Feb 19 2010
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x/(x + 1/(k+4)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 01 2013
G.f.: W(0), where W(k) = 1 - x*(k+4)/( x*(k+4) - 1/(1 - x*(k+1)/( x*(k+1) - 1/W(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Aug 26 2013
a(n) = A245334(n,n-3) / 4. - Reinhard Zumkeller, Aug 31 2014
From Peter Bala, May 22 2017: (Start)
The o.g.f. A(x) satisfies the Riccati equation x^2*A'(x) + (4*x - 1)*A(x) + 1 = 0.
G.f. as an S-fraction: A(x) = 1/(1 - 4*x/(1 - x/(1 - 5*x/(1 - 2*x/(1 - 6*x/(1 - 3*x/(1 - ... - (n + 3)*x/(1 - n*x/(1 - ... ))))))))) (apply Stokes, 1982).
A(x) = 1/(1 - 3*x - x/(1 - 4*x/(1 - 2*x/(1 - 5*x/(1 - 3*x/(1 - 6*x/(1 - ... - n*x/(1 - (n+3)*x/(1 - ... ))))))))). (End)
H(x) = (1 - (1 + x)^(-3)) / 3 = x - 4 x^2/2! + 20 x^3/3! - ... is an e.g.f. of the signed sequence (n!/4!), which is the compositional inverse of G(x) = (1 - 3*x)^(-1/3) - 1, an e.g.f. for A007559. Cf. A094638, A001710 (for n!/2!), and A001720 (for n!/4!). Cf. columns of A094587, A173333, and A213936 and rows of A138533.- Tom Copeland, Dec 27 2019
E.g.f.: x^3 / (3! * (1 - x)). - Ilya Gutkovskiy, Jul 09 2021
From Amiram Eldar, Jan 15 2023: (Start)
Sum_{n>=3} 1/a(n) = 6*e - 15.
Sum_{n>=3} (-1)^(n+1)/a(n) = 3 - 6/e. (End)
MAPLE
f := proc(n) n!/6; end;
BB:= [S, {S = Prod(Z, Z, C), C = Union(B, Z, Z), B = Prod(Z, C)}, labelled]: seq(combstruct[count](BB, size=n)/12, n=3..20); # Zerinvary Lajos, Jun 19 2008
G(x):=1/(1-x)^4: f[0]:=G(x): for n from 1 to 18 do f[n]:=diff(f[n-1], x) od: x:=0: seq(f[n], n=0..16); # Zerinvary Lajos, Apr 01 2009
MATHEMATICA
a[n_]:=n!/6; (*Vladimir Joseph Stephan Orlovsky, Dec 13 2008 *)
Range[3, 30]!/6 (* Harvey P. Dale, Aug 12 2012 *)
PROG
(Magma) [Factorial(n)/6: n in [3..30]]; // Vincenzo Librandi, Jun 20 2011
(PARI) a(n)=n!/6 \\ Charles R Greathouse IV, Jan 12 2012
(Haskell)
a001715 = (flip div 6) . a000142 -- Reinhard Zumkeller, Aug 31 2014
KEYWORD
nonn,easy
EXTENSIONS
More terms from Harvey P. Dale, Aug 12 2012
STATUS
approved
A partition product of Stirling_1 type [parameter k = -4] with biggest-part statistic (triangle read by rows).
+10
11
1, 1, 4, 1, 12, 20, 1, 72, 80, 120, 1, 280, 1000, 600, 840, 1, 1740, 9200, 9000, 5040, 6720, 1, 8484, 79100, 138600, 88200, 47040, 60480, 1, 57232, 874720, 1789200, 1552320, 940800, 483840, 604800, 1, 328752, 9532880
OFFSET
1,3
COMMENTS
Partition product of prod_{j=0..n-2}(k-n+j+2) and n! at k = -4,
summed over parts with equal biggest part (see the Luschny link).
Underlying partition triangle is A144354.
Same partition product with length statistic is A049352.
Diagonal a(A000217(n)) = rising_factorial(4,n-1), A001715(n+2).
Row sum is A049377.
FORMULA
T(n,0) = [n = 0] (Iverson notation) and for n > 0 and 1 <= m <= n
T(n,m) = Sum_{a} M(a)|f^a| where a = a_1,..,a_n such that
1*a_1+2*a_2+...+n*a_n = n and max{a_i} = m, M(a) = n!/(a_1!*..*a_n!),
f^a = (f_1/1!)^a_1*..*(f_n/n!)^a_n and f_n = product_{j=0..n-2}(j-n-2).
KEYWORD
easy,nonn,tabl
AUTHOR
Peter Luschny, Mar 07 2009, Mar 14 2009
STATUS
approved
A triangle of numbers related to triangle A030526.
+10
10
1, 5, 1, 30, 15, 1, 210, 195, 30, 1, 1680, 2550, 675, 50, 1, 15120, 34830, 14025, 1725, 75, 1, 151200, 502740, 287280, 51975, 3675, 105, 1, 1663200, 7692300, 5961060, 1482705, 151200, 6930, 140, 1, 19958400, 124740000, 126913500, 41545980
OFFSET
1,2
COMMENTS
a(n,1)= A001720(n+3). a(n,m)=: S1p(5; n,m), a member of a sequence of lower triangular Jabotinsky matrices with nonnegative entries, including S1p(1; n,m)= A008275 (unsigned Stirling first kind), S1p(2; n,m)= A008297(n,m) (unsigned Lah numbers), S1p(3; n,m)= A046089(n,m), S1p(4; n,m)= A049352(n,m).
Signed lower triangular matrix (-1)^(n-m)*a(n,m) is inverse to matrix A049029(n,m) := S2(5; n,m). The monic row polynomials E(n,x) := sum(a(n,m)*x^m,m=1..n), E(0,x) := 1 are exponential convolution polynomials (see A039692 for the definition and a Knuth reference).
a(n,m) enumerates unordered increasing n-vertex m-forests composed of m unary trees (out-degree r from {0,1}) whose vertices of depth (distance from the root) j>=1 come in j+4 colors. The k roots (j=0) each come in one (or no) color. - Wolfdieter Lang, Oct 12 2007
Also the Bell transform of A001720. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 28 2016
LINKS
W. Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
FORMULA
a(n, m) = n!*A030526(n, m)/(m!*4^(n-m)); a(n, m) = (4*m+n-1)*a(n-1, m) + a(n-1, m-1), n >= m >= 1; a(n, m)=0, n<m; a(n, 0) := 0; a(1, 1)=1. E.g.f. for m-th column: ((x*(2-x)*(2-2*x+x^2)/(4*(1-x)^4))^m)/m!.
a(n,k) = (n!*sum(j=1..k, (-1)^(k-j)*binomial(k,j)*binomial(n+4*j-1,4*j-1)))/(4^k*k!). - Vladimir Kruchinin, Apr 01 2011
EXAMPLE
Triangle begins:
{1};
{5,1};
{30,15,1}; E.g., row polynomial E(3,x)=30*x+15*x^2+x^3.
{210,195,30,1};
...
a(4,2)= 195 =4*(5*6)+3*(5*5) from the two types of unordered 2-forests of unary increasing trees associated with the two m=2 parts partitions (1,3) and (2^2) of n=4. The first type has 4 increasing labelings, each coming in (1)*(1*5*6)=30 colored versions, e.g., ((1c1),(2c1,3c5,4c6)) with lcp for vertex label l and color p. Here the vertex labeled 3 has depth j=1, hence 5 colors, c1..c5, can be chosen and the vertex labeled 4 with j=2 can come in 6 colors, e.g., c1..c6. Therefore there are 4*((1)*(1*5*6))=120 forests of this (1,3) type. Similarly the (2,2) type yields 3*((1*5)*(1*5))=75 such forests, e.g., ((1c1,3c4)(2c1,4c5)) or ((1c1,3c5)(2c1,4c2)), etc. - Wolfdieter Lang, Oct 12 2007
MAPLE
# The function BellMatrix is defined in A264428.
# Adds (1, 0, 0, 0, ..) as column 0.
BellMatrix(n -> (n+4)!/24, 10); # Peter Luschny, Jan 28 2016
MATHEMATICA
a[n_, m_] /; n >= m >= 1 := a[n, m] = (4m + n - 1)*a[n-1, m] + a[n-1, m-1]; a[n_, m_] /; n < m = 0; a[_, 0] = 0; a[1, 1] = 1; Flatten[Table[a[n, m], {n, 1, 9}, {m, 1, n}]] (* Jean-François Alcover, Jul 22 2011 *)
BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len-1}, {k, 0, len-1}]];
rows = 10;
M = BellMatrix[(#+4)!/24&, rows];
Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
PROG
(Maxima) a(n, k):=(n!*sum((-1)^(k-j)*binomial(k, j)*binomial(n+4*j-1, 4*j-1), j, 1, k))/(4^k*k!); /* Vladimir Kruchinin, Apr 01 2011 */
CROSSREFS
Cf. A049378 (row sums).
Cf. A134139 (alternating row sums).
KEYWORD
easy,nonn,tabl
STATUS
approved
A triangle of numbers related to triangle A030527.
+10
9
1, 6, 1, 42, 18, 1, 336, 276, 36, 1, 3024, 4200, 960, 60, 1, 30240, 66024, 23400, 2460, 90, 1, 332640, 1086624, 557424, 87360, 5250, 126, 1, 3991680, 18805248, 13349952, 2916144, 255360, 9912, 168, 1, 51891840, 342486144, 325854144, 95001984
OFFSET
1,2
COMMENTS
a(n,1) = A001725(n+4). a(n,m)=: S1p(6; n,m), a member of a sequence of lower triangular Jabotinsky matrices with nonnegative entries, including S1p(1; n,m) = A008275 (unsigned Stirling first kind), S1p(2; n,m) = A008297(n,m) (unsigned Lah numbers). S1p(3; n,m) = A046089(n,m), S1p(4; n,m) = A049352, S1p(5; n,m) = A049353(n,m).
Signed lower triangular matrix (-1)^(n-m)*a(n,m) is inverse to matrix A049385(n,m) =: S2(6; n,m). The monic row polynomials E(n,x) := Sum_{m=1..n} (a(n,m)*x^m), E(0,x) := 1 are exponential convolution polynomials (see A039692 for the definition and a Knuth reference).
a(n,m) enumerates unordered increasing n-vertex m-forests composed of m unary trees (out-degree r from {0,1}) whose vertices of depth (distance from the root) j >= 1 come in j+5 colors. The k roots (j=0) each come in one (or no) color. - Wolfdieter Lang, Oct 12 2007
LINKS
W. Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
FORMULA
a(n, m) = n!*A030527(n, m)/(m!*5^(n-m)); a(n, m) = (5*m+n-1)*a(n-1, m) + a(n-1, m-1), n >= m >= 1; a(n, m)=0, n < m; a(n, 0) := 0; a(1, 1)=1. E.g.f. for m-th column: ((x*(5 - 10*x + 10*x^2 - 5*x^3 + x^4)/(5*(1-x)^5))^m)/m!.
a(n,k) = n!* Sum_{j=1..k} (-1)^(k-j)*binomial(k,j)*binomial(n+5*j-1,5*j-1) /(5^k*k!). - Vladimir Kruchinin, Apr 01 2011
EXAMPLE
Triangle begins
1;
6, 1;
42, 18, 1;
336, 276, 36, 1;
3024, 4200, 960, 60, 1;
30240, 66024, 23400, 2460, 90, 1;
332640, 1086624, 557424, 87360, 5250, 126, 1;
E.g., row polynomial E(3,x) = 42*x + 18*x^2 + x^3.
a(4,2) = 276 = 4*(6*7) + 3*(6*6) from the two types of unordered 2-forests of unary increasing trees associated with the two m=2 parts partitions (1,3) and (2^2) of n=4. The first type has 4 increasing labelings, each coming in (1)*(1*6*7)=42 colored versions, e.g., ((1c1),(2c1,3c6,4c3)) with lcp for vertex label l and color p. Here the vertex labeled 3 has depth j=1, hence 6 colors, c1..c6, can be chosen and the vertex labeled 4 with j=2 can come in 7 colors, e.g., c1..c7. Therefore there are 4*((1)*(1*6*7))=168 forests of this (1,3) type. Similarly the (2,2) type yields 3*((1*6)*(1*6))=108 such forests, e.g., ((1c1,3c4)(2c1,4c6)) or ((1c1,3c5)(2c1,4c2)), etc. - Wolfdieter Lang, Oct 12 2007
MAPLE
# The function BellMatrix is defined in A264428.
# Adds (1, 0, 0, 0, ..) as column 0.
BellMatrix(n -> (n+5)!/120, 10); # Peter Luschny, Jan 28 2016
MATHEMATICA
a[n_, k_] = n!*Sum[(-1)^(k-j)*Binomial[k, j]*Binomial[n + 5j - 1, 5j - 1]/(5^k*k!), {j, 1, k}] ;
Flatten[Table[a[n, k], {n, 1, 9}, {k, 1, n}] ][[1 ;; 40]]
(* Jean-François Alcover, Jun 01 2011, after Vladimir Kruchinin *)
BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len-1}, {k, 0, len-1}]];
rows = 10;
M = BellMatrix[(#+5)!/120&, rows];
Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
PROG
(Maxima)
a(n, k)=(n!*sum((-1)^(k-j)*binomial(k, j)*binomial(n+5*j-1, 5*j-1), j, 1, k))/(5^k*k!); /* Vladimir Kruchinin, Apr 01 2011 */
(PARI)
a(n, k)=(n!*sum(j=1, k, (-1)^(k-j)*binomial(k, j)*binomial(n+5*j-1, 5*j-1)))/(5^k*k!);
for(n=1, 12, for(k=1, n, print1(a(n, k), ", ")); print()); /* print triangle */ /* Joerg Arndt, Apr 01 2011 */
(GAP) Flat(List([1..10], n->Factorial(n)*List([1..n], k->Sum([1..k], j->(-1)^(k-j)*Binomial(k, j)*Binomial(n+5*j-1, 5*j-1)/(5^k*Factorial(k)))))); # Muniru A Asiru, Jun 23 2018
CROSSREFS
Cf. A049402 (row sums), A134140 (alternating row sums).
KEYWORD
easy,nonn,tabl
STATUS
approved
Lower triangular array called S1hat(4) related to partition number array A144885.
+10
5
1, 4, 1, 20, 4, 1, 120, 36, 4, 1, 840, 200, 36, 4, 1, 6720, 1720, 264, 36, 4, 1, 60480, 12480, 2040, 264, 36, 4, 1, 604800, 118560, 16000, 2296, 264, 36, 4, 1, 6652800, 1081920, 149600, 17280, 2296, 264, 36, 4, 1, 79833600, 11793600, 1362240, 163680, 18304, 2296, 264
OFFSET
1,2
COMMENTS
If in the partition array M31hat(4):=A144885 entries with the same parts number m are summed one obtains this triangle of numbers S1hat(4). In the same way the signless Stirling1 triangle |A008275| is obtained from the partition array M_2 = A036039.
The first columns are A001715(n+2), A144888, A144889,...
FORMULA
a(n,m)=sum(product(|S1(4;j,1)|^e(n,m,q,j),j=1..n),q=1..p(n,m)) if n>=m>=1, else 0. Here p(n,m)=A008284(n,m), the number of m parts partitions of n and e(n,m,q,j) is the exponent of j in the q-th m part partition of n. |S1(4,n,1)|= A049352(n,1) = A001715(n+2) = (n+2)!/3!.
EXAMPLE
[1];[4,1];[20,4,1];[120,36,4,1];[840,200,36,4,1];...
CROSSREFS
A144887 (row sums).
KEYWORD
nonn,easy,tabl
AUTHOR
Wolfdieter Lang Oct 09 2008
STATUS
approved
Generalized unsigned Stirling1 triangle, S1p(7).
+10
4
1, 7, 1, 56, 21, 1, 504, 371, 42, 1, 5040, 6440, 1295, 70, 1, 55440, 114520, 36225, 3325, 105, 1, 665280, 2116800, 983920, 135975, 7105, 147, 1, 8648640, 40884480, 26714800, 5199145, 398860, 13426, 196, 1, 121080960, 826338240, 735469280
OFFSET
1,2
COMMENTS
Signed lower triangular matrix (-1)^(n-m)*a(n,m) is inverse to matrix A092082(n, m) =: S2(7; n,m). The monic row polynomials E(n,x) := sum(a(n,m)*x^m, m=1..n), E(0,x) := 1 are exponential convolution polynomials (see A039692 for the definition and a Knuth reference).
a(n,m) enumerates unordered increasing n-vertex m-forests composed of m unary trees (out-degree r from {0,1}) whose vertices of depth (distance from the root) j>=1 come in j+6 colors. The k roots (j=0) each come in one (or no) color. - Wolfdieter Lang, Oct 05 2007
A triangle of numbers related to triangle A132166.
a(n,1)= A001730(n,5), n>=1. a(n,m)=: S1p(7; n,m), a member of a sequence of lower triangular Jabotinsky matrices with nonnegative entries, including S1p(1; n, m)= A008275 (unsigned Stirling first kind), S1p(2; n,m)= A008297(n, m) (unsigned Lah numbers). S1p(3; n,m)= A046089(n,m), S1p(4; n,m)= A049352, S1p(5; n,m)= A049353(n,m), S1p(6; n,m)= A049374(n, m).
The Bell transform of factorial(n+6)/factorial(6). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 18 2016
LINKS
W. Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
W. Lang, First ten rows.
FORMULA
a(n, m) = n!*A132166(n, m)/(m!*6^(n-m)); a(n, m) = (6*m+n-1)*a(n-1, m) + a(n-1, m-1), n >= m >= 1; a(n, m)=0, n<m; a(n, 0) := 0; a(1, 1)=1. E.g.f. for m-th column: ((x*(6-15*x+20*x^2-15*x^3+6*x^4-x^5)/(6*(1-x)^6))^m)/m!.
EXAMPLE
{1}; {7,1}; {56,21,1}; {504,371,42,1}; ... E.g. Row polynomial E(3,x)=56*x+21*x^2+x^3.
a(4,2)= 371 = 4*(7*8)+3*(7*7) from the two types of unordered 2-forests of unary increasing trees associated with the two m=2 parts partitions (1,3) and (2^2) of n=4. The first type has 4 increasing labelings, each coming in (1)*(1*7*8)=56 colored versions, e.g., ((1c1),(2c1,3c7,4c5)) with lcp for vertex label l and color p. Here the vertex labeled 3 has depth j=1, hence 7 colors, c1..c7, can be chosen and the vertex labeled 4 with j=2 can come in 8 colors, e.g., c1..c8. Therefore there are 4*((1)*(1*7*8))=224 forests of this (1,3) type. Similarly the (2,2) type yields 3*((1*7)*(1*7))=147 such forests, e.g. ((1c1,3c4)(2c1,4c7)) or ((1c1,3c6)(2c1,4c2)), etc. - Wolfdieter Lang, Oct 05 2007
MAPLE
# The function BellMatrix is defined in A264428.
# Adds (1, 0, 0, 0, ..) as column 0.
BellMatrix(n -> (n+6)!/6!, 9); # Peter Luschny, Jan 27 2016
MATHEMATICA
a[n_, m_] /; n >= m >= 1 := a[n, m] = (6*m + n - 1)*a[n-1, m] + a[n-1, m-1]; a[n_, m_] /; n < m = 0; a[_, 0] = 0; a[1, 1] = 1; Flatten[Table[a[n, m], {n, 1, 9}, {m, 1, n}]][[1 ;; 39]] (* Jean-François Alcover, Jun 01 2011, after formula *)
BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
rows = 12;
M = BellMatrix[(# + 6)!/6! &, rows];
Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 24 2018, after Peter Luschny *)
PROG
(Sage) # uses[bell_matrix from A264428]
# Adds a column 1, 0, 0, 0, ... at the left side of the triangle.
bell_matrix(lambda n: factorial(n+6)/factorial(6), 10) # Peter Luschny, Jan 18 2016
CROSSREFS
First column A001730(n+5), n>=1.
Row sums A132164. Alternating row sums A132165.
KEYWORD
nonn,easy,tabl
AUTHOR
Wolfdieter Lang, Oct 12 2007
STATUS
approved
Partition number array, called M31hat(4).
+10
4
1, 4, 1, 20, 4, 1, 120, 20, 16, 4, 1, 840, 120, 80, 20, 16, 4, 1, 6720, 840, 480, 400, 120, 80, 64, 20, 16, 4, 1, 60480, 6720, 3360, 2400, 840, 480, 400, 320, 120, 80, 64, 20, 16, 4, 1, 604800, 60480, 26880, 16800, 14400, 6720, 3360, 2400, 1920, 1600, 840, 480, 400, 320
OFFSET
1,2
COMMENTS
Each partition of n, ordered as in Abramowitz-Stegun (A-St order; for the reference see A134278), is mapped to a nonnegative integer a(n,k) =: M31hat(4;n,k) with the k-th partition of n in A-St order.
The sequence of row lengths is A000041 (partition numbers) [1, 2, 3, 5, 7, 11, 15, 22, 30, 42,...].
Fourth member (K=4) in the family M31hat(K) of partition number arrays.
If M31hat(4;n,k) is summed over those k with fixed number of parts m one obtains the unsigned triangle S1hat(4):= A144886.
FORMULA
a(n,k) = product(|S1(4;j,1)|^e(n,k,j),j=1..n) with |S1(4;n,1)| = A049352(n,1) = A001715(n+2) = [1,4,20,120,840,6720,...] = (n+2)!/3!, n>=1 and the exponent e(n,k,j) of j in the k-th partition of n in the A-St ordering of the partitions of n.
EXAMPLE
[1];[4,1];[20,4,1];[120,20,16,4,1];[840,120,80,20,16,4,1];...
a(4,3)= 16 = |S1(4;2,1)|^2. The relevant partition of 4 is (2^2).
CROSSREFS
A144887 (row sums).
A144880 (M31hat(3) array). A144886 (S1hat(4)).
KEYWORD
nonn,easy,tabf
AUTHOR
Wolfdieter Lang Oct 09 2008, Oct 28 2008
STATUS
approved

Search completed in 0.012 seconds