Nothing Special   »   [go: up one dir, main page]

login
Search: a014191 -id:a014191
     Sort: relevance | references | number | modified | created      Format: long | short | data
Inverse of 152nd cyclotomic polynomial.
+10
35
1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0
OFFSET
0
COMMENTS
Periodic with period length 152. - Ray Chandler, Apr 03 2017
In general the expansion of 1/Phi(N) is N-periodic, but also satisfies a linear recurrence of lower order given by degree(Phi(N)) = phi(N) = A000010(N) < N. The signature is given by the coefficients of (1-Phi(N)). - M. F. Hasler, Feb 18 2018
LINKS
Index entries for linear recurrences with constant coefficients, order 72, signature (0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, -1).
MATHEMATICA
CoefficientList[Series[1/Cyclotomic[152, x], {x, 0, 200}], x]
PROG
(PARI) Vec(1/polcyclo(152) + O(x^99)) \\ Jinyuan Wang, Feb 28 2020
CROSSREFS
Cf. similar sequences (namely 1/Phi(N), N <= 75) listed in A240328.
Cf. also A240465 (76), A014086 (77), A014087 (78), A014093 (84), A014094 (85), A014096 (87), A014099 (90), A014100 (91), A014102 (93), A014104 (95), A014108 (99), A014111 (102), A014114 (105), A014119 (110), A014123 (114), A014124 (115), A014128 (119), A014129 (120), A014135 (126), A014139 (130), A014141 (132), A014142 (133), A014147 (138), A014149 (140), A014152 (143), A014154 (145), A014159 (150), A014163 (154) - A014165 (156), A014170 (161), A014174 (165), A014177 (168), A014179 (170), A014183 (174), A014184 (175), A014189 (180), A014191 (182), A014194 (185) - A014196 (187), A014199 (190), A014204 (195), A014207 (198), A014212 (203), A014218 (209), A014219 (210), A014226 (217), A014229 (220), A014230 (221), A014239 (230), A014240 (231), A014247 (238), A014256 (247), A014262 (253).
KEYWORD
sign,easy
AUTHOR
Vincenzo Librandi, Apr 06 2014
STATUS
approved

Search completed in 0.006 seconds