Nothing Special   »   [go: up one dir, main page]

login
Search: a001541 -id:a001541
     Sort: relevance | references | number | modified | created      Format: long | short | data
A005319 and A002315 interleaved.
+10
17
0, 1, 4, 7, 24, 41, 140, 239, 816, 1393, 4756, 8119, 27720, 47321, 161564, 275807, 941664, 1607521, 5488420, 9369319, 31988856, 54608393, 186444716, 318281039, 1086679440, 1855077841, 6333631924, 10812186007, 36915112104, 63018038201, 215157040700
OFFSET
0,3
COMMENTS
Also, numerators of the lower principal and intermediate convergents to 2^(1/2). The lower principal and intermediate convergents to 2^(1/2), beginning with 1/1, 4/3, 7/5, 24/17, 41/29, form a strictly increasing sequence; essentially, numerators=A143608 and denominators=A079496.
Sequence a(n) such that a(2*n) = sqrt(2*A001108(2*n)) and a(2*n+1) = sqrt(A001108(2*n+1)).
For n > 0, a(n) divides A******(k+1,n+1)-A******(k,n+1) where A****** is any one of A182431, A182439, A182440, A182441 and k is any nonnegative integer.
If p is a prime of the form 8*r +/- 3 then a(p+1) == 0 (mod p); if p is a prime of the form 8*r +/- 1 then a(p-1) == 0 (mod p).
Numbers n such that sqrt(floor(n^2/2 + 1)) is an integer. The integer square roots are given by A079496. - Richard R. Forberg, Aug 01 2013
From Peter Bala, Mar 23 2018: (Start)
Define a binary operation o on the real numbers by x o y = x*sqrt(1 + y^2) + y*sqrt(1 + x^2). The operation o is commutative and associative with identity 0. Then we have
a(2*n + 1) = 1 o 1 o ... o 1 (2*n + 1 terms) and
a(2*n) = sqrt(2)*(1 o 1 o ... o 1) (2*n terms). Cf. A084068.
This is a fourth-order divisibility sequence. Indeed, a(2*n) = sqrt(2)*U(2*n) and a(2*n+1) = U(2*n+1), where U(n) is the Lehmer sequence [Lehmer, 1930] defined by the recurrence U(n) = 2*sqrt(2)*U(n-1) - U(n-2) with U(0) = 0 and U(1) = 1. The solution to the recurrence is U(n) = (1/2)*( (sqrt(2) + 1)^n - (sqrt(2) - 1)^n ). (End)
REFERENCES
Serge Lang, Introduction to Diophantine Approximations, Addison-Wesley, New York, 1966.
LINKS
John M. Campbell, An Integral Representation of Kekulé Numbers, and Double Integrals Related to Smarandache Sequences, arXiv preprint arXiv:1105.3399 [math.GM], 2011.
Creighton Kenneth Dement, Comments on A143608 and A143609
Vincent Granville, Successive records in mathematical sequences: surprising result, Mathematics Stack Exchange, 2019.
Clark Kimberling, Best lower and upper approximations to irrational numbers, Elem. Math. vol. 52 iss. 3 (1997) 122-126.
D. H. Lehmer, An extended theory of Lucas' functions, Annals of Mathematics, Second Series, Vol. 31, No. 3 (Jul., 1930), pp. 419-448.
Eric Weisstein's World of Mathematics, Lehmer Number
FORMULA
a(2*n) = (a(2*n - 1) + a(2*n + 1))/2.
a(2*n + 1) = (a(2*n) + a(2*n + 2))/4.
a(2*n) = 4*A001109(n).
a(2*n + 1) = 4*A001109(n) + A001541(n).
From Colin Barker, Jun 29 2012: (Start)
a(n) = 6*a(n-2) - a(n-4).
G.f.: x*(1 + 4*x + x^2)/((1 + 2*x - x^2)*(1 - 2*x - x^2)) = x*(1 + 4*x + x^2)/(1 - 6*x^2 + x^4). (End)
2*a(n) = A078057(n) - A123335(n-1). - R. J. Mathar, Jul 04 2012
a(2n) = A005319(n); a(2n+1) = A002315(n). - R. J. Mathar, Jul 17 2009
a(n)*a(n+1) + 1 = A001653(n+1). - Charlie Marion, Dec 11 2012
a(n) = (((-2 - sqrt(2) + (-1)^n * (-2+sqrt(2))) * ((-1+sqrt(2))^n - (1+sqrt(2))^n)))/(4*sqrt(2)). - Colin Barker, Mar 27 2016
a(n) = A084068(n) - A079496(n). - César Aguilera, Feb 14 2023
MAPLE
A143608 := proc(n)
option remember;
if n <= 3 then
op(n+1, [0, 1, 4, 7]) ;
else
6*procname(n-2)-procname(n-4) ;
end if;
end proc: # R. J. Mathar, Jul 22 2012
MATHEMATICA
a = -4; b = -1; Reap[While[b<2000000000, t = 4*b-a; Sow[t]; a=b; b=t; t = 2*b-a; Sow[t]; a=b; b=t]][[2, 1]]
CoefficientList[Series[x*(1 + 4*x + x^2)/(1 - 6*x^2 + x^4), {x, 0, 30}], x] (* Wesley Ivan Hurt, Aug 24 2014 *)
LinearRecurrence[{0, 6, 0, -1}, {0, 1, 4, 7}, 31] (* Jean-François Alcover, Sep 21 2017 *)
PROG
(PARI) a(n)=([0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1; -1, 0, 6, 0]^n*[0; 1; 4; 7])[1, 1] \\ Charles R Greathouse IV, Jun 11 2015
(PARI) concat(0, Vec(x*(1+4*x+x^2)/((1+2*x-x^2)*(1-2*x-x^2)) + O(x^50))) \\ Colin Barker, Mar 27 2016
(Magma) I:=[0, 1, 4, 7]; [n le 4 select I[n] else 6*Self(n-2) - Self(n-4): n in [1..30]]; // G. C. Greubel, Mar 27 2018
KEYWORD
nonn,easy,changed
AUTHOR
Originally submitted by Clark Kimberling, Aug 27 2008. Merged with an essentially identical sequence submitted by Kenneth J Ramsey, Jun 01 2012, by N. J. A. Sloane, Aug 02 2012
STATUS
approved
a(n) = 6*a(n-1) - a(n-2), n >= 2, a(0)=1, a(1)=4.
+10
16
1, 4, 23, 134, 781, 4552, 26531, 154634, 901273, 5253004, 30616751, 178447502, 1040068261, 6061962064, 35331704123, 205928262674, 1200237871921, 6995498968852, 40772755941191, 237641036678294, 1385073464128573
OFFSET
0,2
COMMENTS
This sequence gives one half of all positive solutions y = y1 = a(n) of the first class of the Pell equation x^2 - 2*y^2 = -7. For the corresponding x=x1 terms see A054490(n). Therefore it also gives one fourth of all positive solutions x = x1 of the first class of the Pell equation x^2 - 2*y^2 = 14, with the y=y1 terms given by A054490. - Wolfdieter Lang, Feb 26 2015
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 122-125, 194-196.
LINKS
I. Adler, Three Diophantine equations - Part II, Fib. Quart., 7 (1969), pp. 181-193.
Seyed Hassan Alavi, Ashraf Daneshkhah, Cheryl E Praeger, Symmetries of biplanes, arXiv:2004.04535 [math.GR], 2020. See Lemma 7.9 p. 21.
E. I. Emerson, Recurrent Sequences in the Equation DQ^2=R^2+N, Fib. Quart., 7 (1969), pp. 231-242.
Tanya Khovanova, Recursive Sequences
FORMULA
a(n) = ((4+sqrt(2))/8)*(3+2*sqrt(2))^(n-1) + ((4-sqrt(2))/8)*(3-2*sqrt(2))^(n-1). - Antonio Alberto Olivares, Mar 29 2008
a(n) = A001653(n+1) - A001109(n). - Antonio Alberto Olivares, Mar 29 2008
Sequence satisfies -7 = f(a(n), a(n+1)) where f(u, v) = u^2 + v^2 - 6*u*v. - Michael Somos, Sep 28 2008
G.f.: (1 - 2*x) / (1 - 6*x + x^2). a(n) = (7 + a(n-1)^2) / a(n-2). - Michael Somos, Sep 28 2008
a(n) = Sum_{k = 0..n} A238731(n,k)*3^k. - Philippe Deléham, Mar 05 2014
a(n) = S(n,6) - 2*S(n-1, 6), n >= 0, with the Chebyshev polynomials S(n, x) (A049310) with S(-1, x) = 0 evaluated at x = 6. S(n, 6) = A001109(n-1). See the g.f. and the Pell comment above. - Wolfdieter Lang, Feb 26 2015
a(0) = -(A038761(0) - A038762(0))/2, a(n) = (A253811(n-1) + A101386(n-1))/2, n >= 1. See the Mar 19 2015 comment on A054490. - Wolfdieter Lang, Mar 19 2015
E.g.f.: exp(3*x)*(4*cosh(2*sqrt(2)*x) + sqrt(2)*sinh(2*sqrt(2)*x))/4. - Stefano Spezia, Apr 30 2020
EXAMPLE
n = 2: A054490(2)^2 - 2*(2*a(2))^2 =
65^2 - 2*(2*23)^2 = -7,
(4*a(2))^2 - 2*A054490(2)^2 =
(4*23)^2 - 2*65^2 = 14. - Wolfdieter Lang, Feb 26 2015
a(2) = (A253811(1) + A101386(1))/2 = (19 + 27)/2 = 23. - Wolfdieter Lang, Mar 19 2015
MAPLE
a[0]:=1: a[1]:=4: for n from 2 to 26 do a[n]:=6*a[n-1]-a[n-2] od: seq(a[n], n=0..20); # Zerinvary Lajos, Jul 26 2006
MATHEMATICA
LinearRecurrence[{6, -1}, {1, 4}, 30] (* Harvey P. Dale, Aug 06 2020 *)
PROG
(PARI) {a(n) = real((3 + 2*quadgen(8))^n * (1 + quadgen(8) / 4))} /* Michael Somos, Sep 28 2008 */
(PARI) {a(n) = polchebyshev(n, 1, 3) + polchebyshev(n-1, 2, 3)} /* Michael Somos, Sep 28 2008 */
CROSSREFS
A038725(n) = a(-n).
KEYWORD
easy,nonn
AUTHOR
Barry E. Williams, May 02 2000
EXTENSIONS
More terms from James A. Sellers, May 03 2000
STATUS
approved
Bisection of Chebyshev sequence T(n,3) (odd part) with Diophantine property.
+10
15
1, 33, 1121, 38081, 1293633, 43945441, 1492851361, 50713000833, 1722749176961, 58522759015841, 1988051057361633, 67535213191279681, 2294209197446147521, 77935577499977736033, 2647515425801796877601
OFFSET
0,2
COMMENTS
(3*a(n))^2 - 2*(2*b(n))^2 = 1 with companion sequence b(n)= A046176(n+1), n>=0 (special solutions of Pell equation).
LINKS
Z. Cerin and G. M. Gianella, On sums of squares of Pell-Lucas Numbers, INTEGERS 6 (2006) #A15
Tanya Khovanova, Recursive Sequences
S. Vidhyalakshmi, V. Krithika, and K. Agalya, On The Negative Pell Equation y^2 = 72x^2 - 8, International Journal of Emerging Technologies in Engineering Research (IJETER) Volume 4, Issue 2, February (2016).
FORMULA
a(n) = 34*a(n-1) - a(n-2), a(-1)=1, a(0)=1.
a(n) = T(2*n+1, 3)/3 = S(n, 34) - S(n-1, 34), with S(n, x) := U(n, x/2), resp. T(n, x), Chebyshev's polynomials of the second, resp. first, kind. See A049310 and A053120. S(-1, x)=0, S(n, 34)= A029547(n), T(n, 3)=A001541(n).
G.f.: (1-x)/(1-34*x+x^2).
a(n) = sqrt(8*A046176(n+1)^2 + 1)/3.
a(n) = (k^n)+(k^(-n))-a(n-1) = A003499(2*n)-a(n-1), where k = (sqrt(2)+1)^4 = 17+12*sqrt(2) and a(0)=1. - Charles L. Hohn, Apr 05 2011
a(n) = a(-n-1) = A029547(n)-A029547(n-1) = ((1+sqrt(2))^(4n+2)+(1-sqrt(2))^(4n+2))/6. - Bruno Berselli, Nov 22 2011
MATHEMATICA
LinearRecurrence[{34, -1}, {1, 33}, 20] (* Vincenzo Librandi, Nov 22 2011 *)
a[c_, n_] := Module[{},
p := Length[ContinuedFraction[ Sqrt[ c]][[2]]];
d := Denominator[Convergents[Sqrt[c], n p]];
t := Table[d[[1 + i]], {i, 0, Length[d] - 1, p}];
Return[t];
] (* Complement of A041027 *)
a[18, 20] (* Gerry Martens, Jun 07 2015 *)
PROG
(Magma) I:=[1, 33]; [n le 2 select I[n] else 34*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 22 2011
(PARI) Vec((1-x)/(1-34*x+x^2)+O(x^99)) \\ Charles R Greathouse IV, Nov 22 2011
(Maxima) makelist(expand(((1+sqrt(2))^(4*n+2)+(1-sqrt(2))^(4*n+2))/6), n, 0, 14); /* _Bruno Berselli, Nov 22 2011 */
CROSSREFS
Cf. A056771 (even part).
Row 34 of array A094954.
Row 3 of array A188646.
Cf. similar sequences listed in A238379.
Similar sequences of the type cosh((2*n+1)*arccosh(k))/k are listed in A302329. This is the case k=3.
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Nov 29 2002
STATUS
approved
a(n) = 4*a(n-1) + 4*a(n-2), a(0)=1, a(1)=2.
+10
14
1, 2, 12, 56, 272, 1312, 6336, 30592, 147712, 713216, 3443712, 16627712, 80285696, 387653632, 1871757312, 9037643776, 43637604352, 210700992512, 1017354387456, 4912221519872, 23718303629312, 114522100596736, 552961616904192, 2669934870003712
OFFSET
0,2
COMMENTS
Original name was: Generalized Fibonacci sequence.
Binomial transform of A084058.
LINKS
Martin Burtscher, Igor Szczyrba, and Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
Tanya Khovanova, Recursive Sequences
FORMULA
a(n) = 2^n * A001333(n).
G.f.: (1-2*x)/(1-4*x-4*x^2).
a(n) = 4*a(n-1) + 4*a(n-2), a(0)=1, a(1)=2.
a(n) = (2 + 2*sqrt(2))^n/2 + (2 - 2*sqrt(2))^n/2.
E.g.f.: exp(2*x)*cosh(2*x*sqrt(2)).
From Johannes W. Meijer, Aug 01 2010: (Start)
Lim_{k->infinity} a(n+k)/a(k) = A084128(n) + 2*A057087(n-1)*sqrt(2).
Lim_{n->infinity} A084128(n)/A057087(n-1) = sqrt(2). (End)
a(n) = Sum_{k=0..n} A201730(n,k)*7^k. - Philippe Deléham, Dec 06 2011
G.f.: G(0)/2, where G(k)= 1 + 1/(1 - x*(4*k-2)/(x*(4*k+2) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 27 2013
a(n) = 2^(n-1)*A002203(n). - Vladimir Reshetnikov, Oct 07 2016
MAPLE
a:=proc(n) option remember; if n=0 then 1 elif n=1 then 2 else
4*a(n-1)+4*a(n-2); fi; end: seq(a(n), n=0..40); # Wesley Ivan Hurt, Jan 31 2017
a := n -> (2*I)^n*ChebyshevT(n, -I):
seq(simplify(a(n)), n = 0..23); # Peter Luschny, Dec 03 2023
MATHEMATICA
CoefficientList[Series[(2 z - 1)/(4 z^2 + 4 z - 1), {z, 0, 100}], z] (* Vladimir Joseph Stephan Orlovsky, Jul 01 2011 *)
Table[2^(n-1) LucasL[n, 2], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 07 2016 *)
LinearRecurrence[{4, 4}, {1, 2}, 30] (* Harvey P. Dale, Mar 01 2018 *)
PROG
(PARI) a(n)=if(n<0, 0, polsym(4+4*x-x^2, n)[n+1]/2)
(Sage) [lucas_number2(n, 4, -4)/2 for n in range(0, 23)] # Zerinvary Lajos, May 14 2009
(Magma) [2^(n-1)*Evaluate(DicksonFirst(n, -1), 2): n in [0..40]]; // G. C. Greubel, Oct 13 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Barry, May 16 2003
STATUS
approved
a(n) = a(-n) = 34*a(n-1) - a(n-2), and a(0)=1, a(1)=17.
+10
13
1, 17, 577, 19601, 665857, 22619537, 768398401, 26102926097, 886731088897, 30122754096401, 1023286908188737, 34761632124320657, 1180872205318713601, 40114893348711941777, 1362725501650887306817, 46292552162781456490001
OFFSET
0,2
COMMENTS
The sequence satisfies the Pell equation a(n)^2 - 18 * A202299(n+1)^2 = 1. - Vincenzo Librandi, Dec 19 2011
Also numbers n such that n - 1 and 2*n + 2 are squares. - Arkadiusz Wesolowski, Mar 15 2015
And they, n - 1 and 2*n + 2, are the squares of A005319 and A003499. - Michel Marcus, Mar 15 2015
This sequence {a(n)} gives all the nonnegative integer solutions of the Pell equation a(n)^2 - 32*(3*A091761(n))^2 = +1. - Wolfdieter Lang, Mar 09 2019
FORMULA
a(n) = (r^n + 1/r^n)/2 with r = 17 + sqrt(17^2-1).
a(n) = 16*A001110(n) + 1 = A001541(2n) = (4*A001109(n))^2 + 1 = 3*A001109(2n-1) - A001109(2n-2) = A001109(2n) - 3*A001109(2n-1).
a(n) = T(n, 17) = T(2*n, 3) with T(n, x) Chebyshev's polynomials of the first kind. See A053120. T(n, 3)= A001541(n).
G.f.: (1-17*x)/(1-34*x+x^2).
G.f.: (1 - 17*x / (1 - 288*x / (17 - x))). - Michael Somos, Apr 05 2019
a(n) = cosh(2n*arcsinh(sqrt(8))). - Herbert Kociemba, Apr 24 2008
a(n) = (a^n + b^n)/2 where a = 17 + 12*sqrt(2) and b = 17 - 12*sqrt(2); sqrt(a(n)-1)/4 = A001109(n). - James R. Buddenhagen, Dec 09 2011
a(-n) = a(n). - Michael Somos, May 28 2014
a(n) = sqrt(1 + 32*9*A091761(n)^2), n >= 0. See one of the Pell comments above. - Wolfdieter Lang, Mar 09 2019
EXAMPLE
G.f. = 1 + 17*x + 577*x^2 + 19601*x^3 + 665857*x^4 + 22619537*x^5 + ...
MATHEMATICA
LinearRecurrence[{34, -1}, {1, 17}, 30] (* Vincenzo Librandi, Dec 18 2011 *)
a[ n_] := ChebyshevT[ 2 n, 3]; (* Michael Somos, May 28 2014 *)
PROG
(Sage) [lucas_number2(n, 34, 1)/2 for n in range(0, 15)] # Zerinvary Lajos, Jun 27 2008
(Magma) I:=[1, 17]; [n le 2 select I[n] else 34*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Dec 18 2011
(Maxima) makelist(expand(((17+sqrt(288))^n+(17-sqrt(288))^n))/2, n, 0, 15); /* Vincenzo Librandi, Dec 18 2011 */
(PARI) {a(n) = polchebyshev( n, 1, 17)}; /* Michael Somos, Apr 05 2019 */
CROSSREFS
Cf. A001075, A001541, A001091, A001079, A023038, A011943, A001081, A023039, A001085 and note relationship with square triangular number sequences A001110 and A001109. A091761.
Row 3 of array A188644.
KEYWORD
nonn,easy
AUTHOR
Henry Bottomley, Aug 16 2000
EXTENSIONS
More terms from James A. Sellers, Sep 07 2000
Chebyshev comments from Wolfdieter Lang, Nov 29 2002
STATUS
approved
Array of ((k^n)+(k^(-n)))/2 where k=(sqrt(x^2+1)+x)^2 for integers x>=1.
+10
13
1, 3, 1, 17, 9, 1, 99, 161, 19, 1, 577, 2889, 721, 33, 1, 3363, 51841, 27379, 2177, 51, 1, 19601, 930249, 1039681, 143649, 5201, 73, 1, 114243, 16692641, 39480499, 9478657, 530451, 10657, 99, 1, 665857, 299537289, 1499219281, 625447713, 54100801, 1555849, 19601, 129, 1
OFFSET
0,2
COMMENTS
Conjecture: Given function f(x, y)=(sqrt(x^2+y)+x)^2; and constant k=f(x, y); then for all integers x>=1 and y=[+-]1, k may be irrational, but ((k^n)+(k^(-n)))/2 always produces integer sequences; y=1 results shown here; y=-1 results are A188644.
Also square array A(n,k), n >= 1, k >= 0, read by antidiagonals, where A(n,k) is Chebyshev polynomial of the first kind T_{k}(x), evaluated at x=2*n^2+1. - Seiichi Manyama, Jan 01 2019
FORMULA
A(n,k) = (A188647(n,k-1) + A188647(n,k))/2.
A(n,k) = Sum_{j=0..k} binomial(2*k,2*j)*(n^2+1)^(k-j)*n^(2*j). - Seiichi Manyama, Jan 01 2019
EXAMPLE
Square array begins:
| 0 1 2 3 4
-----+---------------------------------------------
1 | 1, 3, 17, 99, 577, ...
2 | 1, 9, 161, 2889, 51841, ...
3 | 1, 19, 721, 27379, 1039681, ...
4 | 1, 33, 2177, 143649, 9478657, ...
5 | 1, 51, 5201, 530451, 54100801, ...
6 | 1, 73, 10657, 1555849, 227143297, ...
7 | 1, 99, 19601, 3880899, 768398401, ...
8 | 1, 129, 33281, 8586369, 2215249921, ...
9 | 1, 163, 53137, 17322499, 5647081537, ...
10 | 1, 201, 80801, 32481801, 13057603201, ...
11 | 1, 243, 118097, 57394899, 27893802817, ...
12 | 1, 289, 167041, 96549409, 55805391361, ...
13 | 1, 339, 229841, 155831859, 105653770561, ...
14 | 1, 393, 308897, 242792649, 190834713217, ...
15 | 1, 451, 406801, 366934051, 330974107201, ...
...
MATHEMATICA
max = 9; y = 1; t = Table[k = ((x^2 + y)^(1/2) + x)^2; ((k^n) + (k^(-n)))/2 // FullSimplify, {n, 0, max - 1}, {x, 1, max}]; Table[ t[[n - k + 1, k]], {n, 1, max}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 17 2013 *)
CROSSREFS
Row 1 is A001541, row 2 is A023039, row 3 is A078986, row 4 is A099370, row 5 is A099397, row 6 is A174747, row 8 is A176368, (row 1)*2 is A003499, (row 2)*2 is A087215.
Column 1 is A058331, (column 1)*2 is A005899.
A188644 (f(x, y) as above with y=-1).
Diagonal gives A173128.
Cf. A188647.
KEYWORD
nonn,tabl
AUTHOR
Charles L. Hohn, Apr 06 2011
EXTENSIONS
Edited and extended by Seiichi Manyama, Jan 01 2019
STATUS
approved
T(n,k)=Number of nXk arrays of occupancy after each element stays put or moves to some horizontal or antidiagonal neighbor, with no occupancy greater than 2
+10
13
1, 3, 1, 7, 17, 1, 17, 119, 99, 1, 41, 866, 2008, 577, 1, 99, 6328, 46105, 33873, 3363, 1, 239, 46211, 1010078, 2460824, 571358, 19601, 1, 577, 337274, 22181855, 162430981, 131347807, 9637322, 114243, 1, 1393, 2460918, 487335857, 10794156688
OFFSET
1,2
COMMENTS
Table starts
.1........3............7................17...................41
.1.......17..........119...............866.................6328
.1.......99.........2008.............46105..............1010078
.1......577........33873...........2460824............162430981
.1.....3363.......571358.........131347807..........26135748494
.1....19601......9637322........7010554450........4205264399891
.1...114243....162555929......374176705928......676612123702617
.1...665857...2741882383....19970973695923...108863121975329470
.1..3880899..46248186229..1065911268786396.17515379016294357354
.1.22619537.780082534460.56890876705125765
LINKS
EXAMPLE
Some solutions for n=3 k=4
..1..2..0..1....2..1..2..0....2..1..0..2....2..1..1..1....2..2..1..2
..1..0..2..1....1..1..0..0....1..1..2..0....0..2..0..1....0..0..0..2
..1..1..2..0....1..2..1..1....1..0..2..0....1..1..0..2....2..0..1..0
CROSSREFS
Column 2 is A001541
Row 1 is A001333
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Jan 11 2013
STATUS
approved
a(n) = 6*a(n-1) - a(n-2), n >= 2, a(0)=1, a(1)=2.
+10
12
1, 2, 11, 64, 373, 2174, 12671, 73852, 430441, 2508794, 14622323, 85225144, 496728541, 2895146102, 16874148071, 98349742324, 573224305873, 3340996092914, 19472752251611, 113495517416752, 661500352248901
OFFSET
0,2
COMMENTS
From Wolfdieter Lang, Feb 26 2015: (Start)
The sequence {2*a(n+1)}_{n >= 0}, gives all positive solutions y = y2(n) = 2*a(n+1) of the second class of the Pell equation x^2 - 2*y^2 = -7. For the corresponding terms x = x2(n) see A255236(n).
See A255236 for comments on the first class solutions and the relation to the Pell equation x^2 - 2*y^2 = 14. (End)
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 122-125, 194-196.
LINKS
I. Adler, Three Diophantine equations - Part II, Fib. Quart., 7 (1969), pp. 181-193.
Seyed Hassan Alavi, Ashraf Daneshkhah, Cheryl E Praeger, Symmetries of biplanes, arXiv:2004.04535 [math.GR], 2020. See x'(n) in Lemma 7.9 p. 21.
E. I. Emerson, Recurrent Sequences in the Equation DQ^2=R^2+N, Fib. Quart., 7 (1969), pp. 231-242.
Tanya Khovanova, Recursive Sequences
FORMULA
a(n) = 7*a(n-1) - 7*a(n-2) + a(n-3); a(n) = ((4-sqrt(2))/8)*(3+2*sqrt(2))^(n-1)+((4+sqrt(2))/8)*(3-2*sqrt(2))^(n-1). - Antonio Alberto Olivares, Mar 29 2008
Sequence satisfies -7 = f(a(n), a(n+1)) where f(u, v) = u^2 + v^2 - 6*u*v. - Michael Somos, Sep 28 2008
G.f.: (1 - 4*x) / (1 - 6*x + x^2). a(n) = (7 + a(n-1)^2) / a(n-2). - Michael Somos, Sep 28 2008
From Wolfdieter Lang, Feb 26 2015: (Start)
a(n) = S(n, 6) - 4*S(n-1, 6), n>=0, with the Chebyshev polynomials S(n, x) (A049310), with S(-1, x) = 0, evaluated at x = 6. S(n, 6) = A001109(n-1). See the g.f. and the Pell equation comment above.
a(n) = 6*a(n-1) - a(n-2), n >= 1, a(-1) = 4, a(0) = 1. (See the name.) (End)
From Wolfdieter Lang, Mar 19 2015: (Start)
a(n+1) = sqrt((A255236(n)^2 + 7)/2)/2, n >= 0.
a(n+1) = (A038761(n) + A038762(n))/2, n >= 0. See the Mar 19 2015 comment on A054490. - Wolfdieter Lang, Mar 19 2015
E.g.f.: exp(3*x)*(4*cosh(2*sqrt(2)*x) - sqrt(2)*sinh(2*sqrt(2)*x))/4. - Stefano Spezia, May 01 2020
EXAMPLE
n = 2: a(3) = sqrt((181^2 + 7)/2)/2 = 64.
a(3) = (53 + 75)/2 = 64. - Wolfdieter Lang, Mar 19 2015
MAPLE
a[0]:=1: a[1]:=2: for n from 2 to 26 do a[n]:=6*a[n-1]-a[n-2] od: seq(a[n], n=0..20); # Zerinvary Lajos, Jul 26 2006
MATHEMATICA
Union[Flatten[NestList[{#[[2]], #[[3]], 6#[[3]]-#[[2]]}&, {1, 2, 11}, 25]]] (* Harvey P. Dale, Mar 04 2011 *)
LinearRecurrence[{6, -1}, {1, 2}, 30] (* Harvey P. Dale, Jun 12 2017 *)
PROG
(PARI) {a(n) = real((3 + 2*quadgen(8))^n * (1 - quadgen(8) / 4))} /* Michael Somos, Sep 28 2008 */
(PARI) {a(n) = polchebyshev(n, 1, 3) - polchebyshev(n-1, 2, 3)} /* Michael Somos, Sep 28 2008 */
CROSSREFS
Cf. A001653 and A001541. Cf. A001109.
A038723(n) = a(-n).
KEYWORD
easy,nonn
AUTHOR
Barry E. Williams, May 02 2000
STATUS
approved
a(0) = a(1) = 1; thereafter a(2*n+1) = 2*a(2*n) - a(2*n-1), a(2*n) = 4*a(2*n-1) - a(2*n-2).
+10
12
1, 1, 3, 5, 17, 29, 99, 169, 577, 985, 3363, 5741, 19601, 33461, 114243, 195025, 665857, 1136689, 3880899, 6625109, 22619537, 38613965, 131836323, 225058681, 768398401, 1311738121, 4478554083, 7645370045, 26102926097, 44560482149
OFFSET
0,3
COMMENTS
a(1)=1, a(n) is the smallest integer > a(n-1) such that sqrt(2)*a(n) is closer and > to an integer than sqrt(2)*a(n-1) (i.e., a(n) is the smallest integer > a(n-1) such that frac(sqrt(2)*a(n)) < frac(sqrt(2)*a(n-1)).
a(n)*a(n+3) - a(n+1)*a(n+2) = 2. - Paul D. Hanna, Feb 22 2003
n such that floor(sqrt(2)*n^2) = n*floor(sqrt(2)*n).
The sequence 1,1,3,5,17,... has g.f. (1+x-3x^2-x^3)/(1-6x^2+x^4); a(n) = Sum_{k=0..floor(n/2)} C(n,2k)*2^(n-k-floor((n+1)/2)); a(n) = -(sqrt(2)-1)^n*((sqrt(2)/8-1/4)*(-1)^n - sqrt(2)/8 - 1/4) - (sqrt(2)+1)^n*((sqrt(2)/8-1/4)*(-1)^n - sqrt(2)/8 - 1/4); a(2n) = A001541(n) = A001333(2n); a(2n+1) = A001653(n) = A000129(2n+1). - Paul Barry, Jan 22 2005
The lower principal and intermediate convergents to 2^(1/2), beginning with 1/1, 4/3, 7/5, 24/17, 41/29, form a strictly increasing sequence; essentially, numerators=A143608 and denominators=A079496. - Clark Kimberling, Aug 27 2008
From Richard Choulet, May 09 2010: (Start)
This sequence is a particular case of the following situation: a(0)=1, a(1)=a, a(2)=b
with the recurrence relation a(n+3)=(a(n+2)*a(n+1)+q)/a(n) where q is given in Z to have Q=(a*b^2+q*b+a+q)/(a*b) itself in Z.
The g.f is f: f(z)=(1+a*z+(b-Q)*z^2+(a*b+q-a*Q)*z^3)/(1-Q*z^2+z^4); so we have the linear recurrence: a(n+4)=Q*a(n+2)-a(n).
The general form of a(n) is given by:
a(2*m)=sum((-1)^p*binomial(m-p,p)*Q^(m-2*p),p=0..floor(m/2))+(b-Q)*sum((-1)^p*binomial(m-1-p,p)*Q^(m-1-2*p),p=0..floor((m-1)/2)) and
a(2*m+1)=a*sum((-1)^p*binomial(m-p,p)*Q^(m-2*p),p=0..floor(m/2))+(a*b+q-a*Q)*sum((-1)^p*binomial(m-1-p,p)*Q^(m-1-2*p),p=0..floor((m-1)/2))
(End)
The integer square roots of floor(n^2/2 + 1) or (A007590 + 1). - Richard R. Forberg, Aug 01 2013
REFERENCES
Serge Lang, Introduction to Diophantine Approximations, Addison-Wesley, New York, 1966.
LINKS
Clark Kimberling, Best lower and upper approximates to irrational numbers, Elemente der Mathematik, 52 (1997) 122-126.
Yujun Yang, Heping Zhang, Kirchhoff Index of linear hexagonal chains, Int. J. Quant. Chem. 108 (2008) 503-512, eq (3.3).
FORMULA
a(2n+1) - a(2n) = a(2n) - a(2n-1) = A001542(n).
a(2n+1) = ceiling((2+sqrt(2))/4*(3+2*sqrt(2))^n), a(2n) = ceiling(1/2*(3+2*sqrt(2))^n).
G.f.: (1 + x - 3*x^2 - x^3)/(1 - 6*x^2 + x^4).
a(n) = 6*a(n-2) - a(n-4). - R. J. Mathar, Apr 04 2008
a(-n) = a(n) = A010914(n-3)*2^floor((4 - n)/2). - Michael Somos, Sep 03 2013
a(n) = (sqrt(2)*sqrt(2+(3-2*sqrt(2))^n+(3+2*sqrt(2))^n))/(2+sqrt(2)+(-1)^n*(-2+sqrt(2))). - Gerry Martens, Jun 06 2015
a(n) = 2^(n - 1)*H(n, n mod 2, 1/2) for n >= 3 where H(n, a, b) = hypergeom([a - n/2, b - n/2], [1 - n], -1). - Peter Luschny, Sep 03 2019
a(n) == Pell(n)^(-1) (mod Pell(n+1)) where Pell(n) = A000129(n), use the identity a(n)*Pell(n) - A084068(n-1)*Pell(n+1) = 1, taken modulo Pell(n+1). - Gary W. Adamson, Nov 21 2023
EXAMPLE
1 + x + 3*x^2 + 5*x^3 + 17*x^4 + 29*x^5 + 99*x^6 + 169*x^7 + 577*x^8 + ...
MAPLE
H := (n, a, b) -> hypergeom([a - n/2, b - n/2], [1 - n], -1):
a := n -> `if`(n < 3, [1, 1, 3][n+1], 2^(n - 1)*H(n, irem(n, 2), 1/2)):
seq(simplify(a(n)), n=0..26); # Peter Luschny, Sep 03 2019
MATHEMATICA
a[1] = 1; a[2] = 3; a[3] = 5; a[n_] := a[n] = (a[n-1]*a[n-2] + 2) / a[n-3]; Table[a[n], {n, 1, 29}] (* Jean-François Alcover, Jul 17 2013, after Paul D. Hanna *)
PROG
(PARI) {a(n) = n = abs(n); 2^((4-n)\2) * real( (10 + 7 * quadgen(8)) / 2 * (2 + quadgen(8))^(n-3) ) } /* Michael Somos, Sep 03 2013 */
(PARI) {a(n) = polcoeff( (1 + x - 3*x^2 - x^3) / (1 - 6*x^2 + x^4) + x * O(x^abs(n)), abs(n))} /* Michael Somos, Sep 03 2013 */
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Benoit Cloitre, Jan 20 2003
EXTENSIONS
a(0)=1 added by Michael Somos, Sep 03 2013
STATUS
approved
Squares k such that 2*k+1 is also a square.
+10
12
0, 4, 144, 4900, 166464, 5654884, 192099600, 6525731524, 221682772224, 7530688524100, 255821727047184, 8690408031080164, 295218051329678400, 10028723337177985444, 340681375412721826704, 11573138040695364122500, 393146012008229658338304, 13355391270239113019379844
OFFSET
0,2
COMMENTS
With the exception of 0, a subsequence of A075114. - R. J. Mathar, Dec 15 2008
Consequently, A014105(k) is a square if and only if k = a(n). - Bruno Berselli, Oct 14 2011
From M. F. Hasler, Jan 17 2012: (Start)
Bisection of A079291. The squares 2*k+1 are given in A055792.
A204576 is this sequence written in binary. (End)
a(n+1), n >= 0, is the perimeter squared (x(n) + y(n) + z(n))^2 of the ordered primitive Pythagorean triple (x(n), y(n) = x(n) + 1, z(n)). The first two terms are (x(0)=0, y(0)=1, z(0)=1), a(1) = 2^2, and (x(1)=3, y(1)=4, z(1)=5), a(2) = 12^2. - George F. Johnson, Nov 02 2012
LINKS
D. W. Wilson, Table of n, a(n-1) for n = 1..100 (offset=1)
Emrah Kılıç, Yücel Türker Ulutaş, and Neşe Ömür, A Formula for the Generating Functions of Powers of Horadam's Sequence with Two Additional Parameters, J. Int. Seq. 14 (2011), Article 11.5.6, table 3, k=2.
Thomas Koshy, Products Involving Reciprocals of Gibonacci Polynomials, The Fibonacci Quarterly, Vol. 60, No. 1 (2022), pp. 15-24.
FORMULA
a(n) = 4*A001110(n) = A001542(n)^2.
a(n+1) = A001652(n)*A001652(n+1) + A046090(n)*A046090(n+1) = A001542(n+1)^2. - Charlie Marion, Jul 01 2003
a(n) = A001653(k+n)*A001653(k-n) - A001653(k)^2, for k >= n >= 0; e.g. 144 = 5741*5 - 169^2. - Charlie Marion, Jul 16 2003
G.f.: 4*x*(1+x)/((1-x)*(1-34*x+x^2)). - R. J. Mathar, Dec 15 2008
a(n) = A079291(2n). - M. F. Hasler, Jan 16 2012
From George F. Johnson, Nov 02 2012: (Start)
a(n) = ((17+12*sqrt(2))^n + (17-12*sqrt(2))^n - 2)/8.
a(n+1) = 17*a(n) + 4 + 12*sqrt(a(n)*(2*a(n) + 1)).
a(n-1) = 17*a(n) + 4 - 12*sqrt(a(n)*(2*a(n) + 1)).
a(n-1)*a(n+1) = (a(n) - 4)^2.
2*a(n) + 1 = (A001541(n))^2.
a(n+1) = 34*a(n) - a(n-1) + 8 for n>1, a(0)=0, a(1)=4.
a(n+1) = 35*a(n) - 35*a(n-1) + a(n-2) for n>0, a(0)=0, a(1)=4, a(2)=144.
a(n)*a(n+1) = (4*A029549(n))^2.
a(n+1) - a(n) = 4*A046176(n).
a(n) + a(n+1) = 4*(6*A029549(n) + 1).
a(n) = (2*A001333(n)*A000129(n))^2.
Limit_{n -> infinity} a(n)/a(n-r) = (17+12*sqrt(2))^r. (End)
Empirical: a(n) = A089928(4*n-2), for n > 0. - Alex Ratushnyak, Apr 12 2013
a(n) = 4*A001109(n)^2. - G. C. Greubel, Aug 18 2022
Product_{n>=2} (1 - 4/a(n)) = sqrt(2)/3 + 1/2 (Koshy, 2022, section 3, p. 19). - Amiram Eldar, Jan 23 2025
MATHEMATICA
b[n_]:= b[n]= If[n<2, n, 34*b[n-1] -b[n-2] +2]; (* b=A001110 *)
a[n_]:= 4*b[n]; Table[a[n], {n, 0, 30}]
4*ChebyshevU[Range[-1, 30], 3]^2 (* G. C. Greubel, Aug 18 2022 *)
PROG
(Magma) [4*Evaluate(ChebyshevU(n), 3)^2: n in [0..30]]; // G. C. Greubel, Aug 18 2022
(SageMath) [4*chebyshev_U(n-1, 3)^2 for n in (0..30)] # G. C. Greubel, Aug 18 2022
CROSSREFS
Cf. similar sequences with closed form ((1 + sqrt(2))^(4*r) + (1 - sqrt(2))^(4*r))/8 + k/4: this sequence (k=-1), A076218 (k=3), A278310 (k=-5).
KEYWORD
nonn,easy
AUTHOR
Amarnath Murthy, Jun 08 2003
EXTENSIONS
Edited and extended by Robert G. Wilson v, Jun 15 2003
STATUS
approved

Search completed in 0.143 seconds