Displaying 1-6 of 6 results found.
page
1
1, 0, 0, 0, 0, 2, 4, 0, 2, 0, 41, 0, 0, 0, 56, 0, 66, 0
Number of vertex-transitive graphs with n nodes.
(Formerly M0302)
+10
10
1, 2, 2, 4, 3, 8, 4, 14, 9, 22, 8, 74, 14, 56, 48, 286, 36, 380, 60, 1214, 240, 816, 188, 15506, 464, 4236, 1434, 25850, 1182, 46308, 2192, 677402, 6768, 132580, 11150, 1963202, 14602, 814216, 48462, 13104170, 52488, 9462226, 99880, 39134640, 399420, 34333800, 364724
Number of Cayley graphs on n nodes.
+10
7
1, 2, 2, 4, 3, 8, 4, 14, 9, 20, 8, 74, 14, 56, 44, 278, 36, 376, 60, 1132, 240, 816, 188, 15394, 464, 4104, 1434, 25784, 1182, 45184, 2192, 659232, 6768, 131660, 11144, 1959040, 14602, 814216, 48462, 13055904, 52488, 9461984, 99880, 39134544, 399126, 34333800, 364724
Numbers k such that every vertex-transitive graph of order k is a Cayley-graph.
+10
2
1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 17, 19, 21, 22, 23, 25, 27, 29, 31, 33, 37, 38, 39, 41, 43, 46, 47, 49, 53, 55, 59, 61, 62, 67, 69, 71, 73, 79, 83, 86, 87, 89, 93, 94, 95, 97, 101, 103, 107, 109, 113, 115, 118, 121, 123, 125, 127, 129, 131, 133, 134, 137, 139
Numbers k such that there exists a non-Cayley vertex-transitive graph of order k.
+10
2
10, 15, 16, 18, 20, 24, 26, 28, 30, 32, 34, 35, 36, 40, 42, 44, 45, 48, 50, 51, 52, 54, 56, 57, 58, 60, 63, 64, 65, 66, 68, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 88, 90, 91, 92, 96, 98, 99, 100, 102, 104, 105, 106, 108, 110, 111, 112, 114, 116, 117, 119, 120, 122, 124
Number of connected Cayley graphs on n nodes.
+10
0
1, 1, 1, 2, 2, 5, 3, 10, 7, 16, 7, 64, 13, 51, 40, 264, 35, 361, 59, 1110, 235, 807, 187, 15310, 461, 4089, 1425, 25726, 1181, 45118, 2191
Search completed in 0.008 seconds
|