Displaying 1-7 of 7 results found.
page
1
Indices of centered dodecahedral numbers ( A005904) which are semiprimes ( A001358).
+20
3
1, 2, 3, 5, 6, 11, 14, 15, 21, 26, 30, 35, 36, 44, 54, 63, 69, 74, 81, 114, 128, 131, 135, 138, 153, 165, 168, 191, 194, 209, 216, 224, 228, 231, 239, 261, 270, 303, 315, 321, 323, 326, 330, 336, 345, 363, 380, 384, 398, 404, 410, 411, 414, 429, 440, 443, 455, 468, 470
COMMENTS
Because the cubic polynomial for centered dodecahedral numbers factors into n time an irreducible quadratic, the dodecahedral numbers can never be prime, but can be semiprime iff (2*n+1) is prime and (5*n^2+5*n+1) is prime. Centered dodecahedral numbers ( A005904) are not to be confused with dodecahedral numbers ( A006566) = n(3n-1)(3n-2)/2, nor with rhombic dodecahedral numbers ( A005917).
FORMULA
n such that A001222( A005904(n)) = 2. n such that Bigomega((2*n+1)*(5*n^2 + 5*n + 1)) is 2. n such that A104011(n) = 2.
EXAMPLE
a(1) = 1 because A005904(1) = 33 = 3 * 11, which is semiprime.
a(2) = 2 because A005904(2) = 155 = 5 * 31, which is semiprime.
a(3) = 3 because A005904(3) = 427 = 7 * 61, which is semiprime.
a(4) = 5 because A005904(5) = 1661 = 11 * 151.
194 is in this sequence because A005904(194) = 73579739 = 389 * 189151, which is semiprime.
PROG
(PARI) isok(n) = isprime(2*n+1) && isprime(5*n^2+5*n+1); \\ Michel Marcus, Apr 30 2016
Number of prime factors (with multiplicity) of centered dodecahedral numbers ( A005904).
+20
2
0, 2, 2, 2, 3, 2, 2, 3, 3, 3, 4, 2, 4, 4, 2, 2, 3, 3, 3, 3, 3, 2, 4, 3, 3, 3, 2, 4, 4, 3, 2, 6, 3, 3, 4, 2, 2, 5, 3, 3, 6, 3, 4, 3, 2, 4, 4, 4, 3, 4, 3, 3, 4, 3, 2, 3, 3, 4, 5, 4, 3, 3, 4, 2, 5, 3, 3, 7, 3, 2, 3, 3, 4, 4, 2, 3, 5, 4, 3, 3, 3, 2, 4, 3, 4, 4, 4, 4, 3, 4, 3, 4, 4, 3, 5, 3, 3, 6, 3, 3
COMMENTS
When a(n) = 2, n is a term of A104012: indices of centered dodecahedral numbers ( A005904) which are semiprimes.
FORMULA
a(n) = Bigomega((2*n+1)*(5*n^2 + 5*n + 1)).
EXAMPLE
a(9) = 3 because A005904(9) = 8569 = 11 * 19 * 41, which has 3 prime factors (which happen to have the same number of digits).
a(18) = 3 because A005904(18) = 63307 = 29 * 37 * 59.
a(96) = 3 because A005904(96) = 8986273 = 101 * 193 * 461.
a(126) = 5 because A005904(126) = 20242783 = 11 * 23 * 29 * 31 * 89, which has 5 prime factors (which happen to have the same number of digits).
MATHEMATICA
PrimeOmega[(2*n+1)*(5*n^2+5*n+1)] /. n -> Range[0, 99] (* Giovanni Resta, Jun 17 2016 *)
Numbers that are sums of consecutive centered dodecahedral numbers ( A005904).
+20
0
1, 33, 34, 155, 188, 189, 427, 582, 615, 616, 909, 1336, 1491, 1524, 1525, 1661, 2570, 2743, 2997, 3152, 3185, 3186, 4215, 4404, 5313, 5740, 5895, 5928, 5929, 6137, 6958, 8569, 8619, 9528, 9955, 10110, 10143, 10144, 10352, 11571, 13095, 14706, 14756, 15203, 15665, 16092
Centered hecatonicosachoral numbers.
+10
3
1, 1441, 11521, 44641, 122401, 273601, 534241, 947521, 1563841, 2440801, 3643201, 5243041, 7319521, 9959041, 13255201, 17308801, 22227841, 28127521, 35130241, 43365601, 52970401, 64088641, 76871521, 91477441, 108072001, 126828001, 147925441, 171551521, 197900641
COMMENTS
A hecatonicosachoral number is a centered figurate number that represents a hecatonicosachoron, which is a four-dimensional regular polytope composed of 120 cells.
One of the 6 centered regular polichoral (centered pentachoral, centered hexadecachoral, centered octachoral, centered icositetrachoral, centered hexacosichoral and centered hecatonicosachoral) numbers.
FORMULA
a(n) = 300*n^4 - 600*n^3 + 420*n^2 - 120*n + 1.
a(n) = 1440* A006322(n-1) + 1 for n > 1.
a(n) = 288*( A151989(n-1)-1)/25 + 1.
G.f.: x*(1 + 1436*x + 4326*x^2 + 1436*x^3 + x^4)/(1 - x)^5. - Stefano Spezia, May 12 2023
MATHEMATICA
Table[300*n^4 - 600*n^3 + 420*n^2 - 120*n + 1, {n, 1, 100}]
a(n) = (n + 1)^2*(5*n^2 + 10*n + 2)/2.
+10
2
1, 34, 189, 616, 1525, 3186, 5929, 10144, 16281, 24850, 36421, 51624, 71149, 95746, 126225, 163456, 208369, 261954, 325261, 399400, 485541, 584914, 698809, 828576, 975625, 1141426, 1327509, 1535464, 1766941, 2023650, 2307361, 2619904, 2963169, 3339106, 3749725, 4197096
COMMENTS
Partial sums of centered dodecahedral numbers ( A005904).
FORMULA
G.f.: (1 + 29*x + 29*x^2 + x^3)/(1 - x)^5.
E.g.f.: exp(x)*(2 + 66*x + 122*x^2 + 50*x^3 + 5*x^4)/2.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
Sum_{n>=0} 1/a(n) = (5 - Pi^2 - sqrt(15)*Pi*cot(sqrt(3/5)*Pi))/9 = 1.0377796966... . - Vaclav Kotesovec, Apr 10 2016
MATHEMATICA
Table[(n + 1)^2 ((5 n^2 + 10 n + 2)/2), {n, 0, 35}]
LinearRecurrence[{5, -10, 10, -5, 1}, {1, 34, 189, 616, 1525}, 36]
PROG
(PARI) x='x+O('x^99); Vec((1+29*x+29*x^2+x^3)/(1-x)^5) \\ Altug Alkan, Apr 10 2016
(Magma) [(n + 1)^2*(5*n^2 + 10*n + 2)/2 : n in [0..50]]; // Wesley Ivan Hurt, Oct 15 2017
a(n) = (-1)^n*(n + 1)*(5*n^2 + 10*n + 1).
+10
0
1, -32, 123, -304, 605, -1056, 1687, -2528, 3609, -4960, 6611, -8592, 10933, -13664, 16815, -20416, 24497, -29088, 34219, -39920, 46221, -53152, 60743, -69024, 78025, -87776, 98307, -109648, 121829, -134880, 148831, -163712, 179553, -196384, 214235, -233136, 253117, -274208, 296439
COMMENTS
Alternating sum of centered dodecahedral numbers ( A005904).
FORMULA
G.f.: (1 - 28*x + x^2)/(1 + x)^4.
E.g.f.: exp(-x)*(1 - 31*x + 30*x^2 - 5*x^3).
a(n) = -4*a(n-1) - 6*a(n-2) - 4*a(n-3) - a(n-4).
MATHEMATICA
Table[(-1)^n (n + 1) (5 n^2 + 10 n + 1), {n, 0, 38}]
LinearRecurrence[{-4, -6, -4, -1}, {1, -32, 123, -304}, 39]
PROG
(Python) for n in range(0, 10**3):print((-1)**n*(n+1)*(5*n**2+10*n+1)) # Soumil Mandal, Apr 10 2016
Centered Platonic numbers.
+10
0
1, 5, 7, 9, 13, 15, 25, 33, 35, 55, 63, 69, 91, 121, 129, 147, 155, 189, 195, 231, 295, 309, 341, 377, 425, 427, 559, 561, 575, 589, 791, 833, 855, 909, 923, 1035, 1159, 1241, 1325, 1415, 1561, 1661, 1665, 1729, 2047, 2057, 2059, 2331, 2511, 2625, 2743, 2869, 3025, 3059, 3303, 3605, 3871, 3925, 4089, 4215, 4255
COMMENTS
Union of centered tetrahedral numbers ( A005894), centered octahedral numbers ( A001845), centered cube numbers ( A005898), centered icosahedral numbers ( A005902) and centered dodecahedral numbers ( A005904).
MATHEMATICA
nn = 18; t1 = Table[(2 n + 1) (n^2 + n + 3)/3, {n, 0, nn}]; t2 = Table[(2 n + 1) (2 n^2 + 2 n + 3)/3, {n, 0, nn}]; t3 = Table[n^3 + (n + 1)^3, {n, 0, nn}]; t4 = Table[(2 n + 1) (5 n^2 + 5 n + 3)/3, {n, 0, nn}]; t5 = Table[(2 n + 1) (5 n^2 + 5 n + 1), {n, 0, nn}]; Select[Union[t1, t2, t3, t4, t5], # <= t1[[-1]] &]
Search completed in 0.010 seconds
|