OFFSET
0,1
COMMENTS
The constant is the abscissa of the first intercept point of the row functions for x > 0 of the generalized Fibonacci function A353595, see illustration.
LINKS
FORMULA
Equals the first positive real root of 2*exp(-I*Pi*x/2)*sin((x - 1)*(Pi/2 - I * arccsch(2)))) / sqrt(5).
EXAMPLE
0.816197640307044395086030989848733265742877280134657182905...
MAPLE
sphi := x -> ((1-sqrt(5))*((1+sqrt(5))/2)^x - (1 + sqrt(5))*((1 - sqrt(5))/2)^x)/ (2*sqrt(5)):
Digits := 120: fsolve(Re(sphi(x)) = 0, x, 0.7..0.9, fulldigits)*10^105:
ListTools:-Reverse(convert(floor(%), base, 10));
MATHEMATICA
sphi[x_] := 2 Re[ Exp[-I Pi x / 2] Sin[(x - 1)(Pi / 2 - I ArcCsch[2])]] / Sqrt[5];
x /. FindRoot[Sphi[x], {x, 0.8}, WorkingPrecision -> 120]
RealDigits[%, 10, 105][[1]]
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Peter Luschny, May 11 2022
STATUS
approved