Nothing Special   »   [go: up one dir, main page]

login
A353001
Numbers k such that the k-th triangular number mod the sum (with multiplicity) of prime factors of k, and the k-th triangular number mod the sum of divisors of k, are both prime.
2
4, 57, 70, 93, 129, 217, 322, 381, 417, 453, 513, 565, 597, 646, 682, 781, 813, 921, 925, 1057, 1081, 1102, 1137, 1165, 1197, 1261, 1317, 1393, 1405, 1558, 1582, 1641, 1750, 1798, 1846, 1857, 1918, 1929, 2073, 2101, 2110, 2173, 2181, 2305, 2329, 2361, 2482, 2506, 2569, 2577, 2626, 2649, 2653
OFFSET
1,1
COMMENTS
Numbers k such that A232324(k) and A352996(k) are prime.
LINKS
EXAMPLE
a(3) = 70 is a term because 70*71/2 = 2485, A000217(70) = 144, A001414(70) = 14, and both 2485 mod 144 = 37 and 2485 mod 14 = 7 are prime.
MAPLE
filter:= proc(n) local a, b, c, t;
a:= n*(n+1)/2;
b:= add(t[1]*t[2], t=ifactors(n)[2]);
if not isprime(a mod b) then return false fi;
c:= numtheory:-sigma(n);
isprime(a mod c)
end proc:
select(filter, [$2..3000]);
MATHEMATICA
Select[Range[3000], And @@ PrimeQ[Mod[#*(# + 1)/2, {DivisorSigma[1, #], Plus @@ Times @@@ FactorInteger[#]}]] &] (* Amiram Eldar, Apr 15 2022 *)
CROSSREFS
Intersection of A352908 and A352997.
Sequence in context: A092273 A193745 A181437 * A156873 A320977 A071540
KEYWORD
nonn
AUTHOR
Robert Israel, Apr 14 2022
STATUS
approved