Nothing Special   »   [go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349970
a(n) = Sum_{k=0..n} (2*k)^(n-k).
5
1, 1, 3, 9, 31, 125, 579, 3009, 17255, 108005, 731883, 5331625, 41501135, 343405709, 3007557523, 27775308049, 269603741111, 2742598070709, 29164361115067, 323444222468089, 3733412864370975, 44767318872513885, 556707323098632547, 7168524182698345313
OFFSET
0,3
LINKS
FORMULA
G.f.: Sum_{k>=0} x^k/(1 - 2*k * x).
a(n) ~ sqrt(Pi) * (2*n/LambertW(2*exp(1)*n))^(1/2 + n - n/LambertW(2*exp(1)*n)) / sqrt(1 + LambertW(2*exp(1)*n)). - Vaclav Kotesovec, Dec 07 2021
MATHEMATICA
a[n_] := Sum[If[k == n == 0, 1, (2*k)^(n - k)], {k, 0, n}]; Array[a, 24, 0] (* Amiram Eldar, Dec 07 2021 *)
PROG
(PARI) a(n) = sum(k=0, n, (2*k)^(n-k));
(PARI) my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, x^k/(1-2*k*x)))
CROSSREFS
Sequence in context: A040027 A182968 A071603 * A090595 A027040 A111063
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Dec 07 2021
STATUS
approved