Nothing Special   »   [go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A348208
a(n) = Sum_{k=0..floor(n/2)} (-1)^(k-1)*(k-1)^2*A106828(n, k).
1
-1, 0, 0, 0, -3, -20, -70, -84, 1267, 18824, 209484, 2284920, 26010369, 314864628, 4073158102, 56304102596, 830061867975, 13016975343184, 216535182535928, 3810394068301296, 70744547160678501, 1382375535029293500, 28364229790262962386, 609820072529413714012
OFFSET
0,5
COMMENTS
For all p prime, a(p) == 0 (mod p*(p-1)).
FORMULA
E.g.f.: (-1 + 2*x - 2*x^2 + x^3 + (1 - x)*(log((1 - x)^(1 - 2*x)) - (log(1 - x))^2))*exp(x).
a(n) ~ 2 * exp(1) * log(n) * n! / n^2 * (1 + (gamma - 3/2)/log(n)), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Dec 09 2021
EXAMPLE
E.g.f.: -1 - 3*x^4/4! - 20*x^5/5! - 70*x^6/6! - 84*x^7/7! + 1267*x^8/8! + 18824*x^9/9! + ...
a(11) = Sum_{k=0..5} (-1)^(k-1)*(k-1)^2*A106828(11, k).
a(11) = (-1)*1*0 + (1)*0*3628800 + (-1)*1*6636960 + (1)*4*3678840 + (-1)*9*705320 + (1)*16*34650 = 2284920.
For k = 0, A106828(11,0) = 0.
For k = 1, (1-1)^2 = 0.
For 2 <= k <= 5, A106828(11, k) == 0 (mod 11*10).
Result a(11) == 0 (mod 11*10).
MAPLE
a := series((-1+2*x-2*x^2+x^3+(1-x)*(log((1-x)^(1-2*x))-(log(1-x))^2))*exp(x), x=0, 24):
seq(n!*coeff(a, x, n), n=0..23);
# second program:
a := n -> add((-1)^(k-1)*(k-1)^2*A106828(n, k), k=0..iquo(n, 2)):
seq(a(n), n=0..23);
MATHEMATICA
CoefficientList[Series[(-1+2*x-2*x^2+x^3+(1-x)*(Log[(1-x)^(1-2*x)]-(Log[1-x])^2))*Exp[x], {x, 0, 23}], x]*Range[0, 23]!
PROG
(PARI) my(x='x+O('x^30)); Vec(serlaplace((-1 + 2*x - 2*x^2 + x^3 + (1 - x)*(log((1 - x)^(1 - 2*x)) - (log(1 - x))^2))*exp(x))) \\ Michel Marcus, Oct 07 2021
CROSSREFS
KEYWORD
sign
AUTHOR
Mélika Tebni, Oct 07 2021
STATUS
approved