Nothing Special   »   [go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338663
a(n) = Sum_{d|n} (n/d)^n * binomial(d+n/d-1, d).
5
1, 9, 82, 1073, 15626, 284567, 5764802, 134874369, 3486981232, 100146490520, 3138428376722, 107039261352736, 3937376385699290, 155587085803983069, 6568409424129452048, 295158038428838854657, 14063084452067724991010, 708242105301294465144506, 37589973457545958193355602
OFFSET
1,2
FORMULA
G.f.: Sum_{k >= 1} (1/(1 - (k * x)^k)^k - 1).
If p is prime, a(p) = 1 + p^(p+1).
MATHEMATICA
a[n_] := DivisorSum[n, (n/#)^n * Binomial[# + n/# - 1, #] &]; Array[a, 20] (* Amiram Eldar, Apr 22 2021 *)
PROG
(PARI) a(n) = sumdiv(n, d, (n/d)^n*binomial(d+n/d-1, d));
(PARI) N=20; x='x+O('x^N); Vec(sum(k=1, N, 1/(1-(k*x)^k)^k-1))
CROSSREFS
Sequence in context: A283498 A294956 A294645 * A308668 A308481 A041146
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Apr 22 2021
STATUS
approved