Nothing Special   »   [go: up one dir, main page]

login
A303355
Expansion of Product_{k>0} (1+k^2*x^k)^(1/k).
1
1, 1, 2, 5, 5, 13, 20, 32, -2, 107, 149, 129, -108, -262, 606, 4273, -1001, -1150, -8147, -25864, 1793, 131821, 236852, 170299, -1457515, -1298382, -696074, 4852276, 13381975, 9282183, -31755860, -38912939, -155537309, 238551912, 420017788, 224666693, -1955768303
OFFSET
0,3
COMMENTS
This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = -1/n, g(n) = -n^2.
MAPLE
seq(coeff(series(mul((1+k^2*x^k)^(1/k), k = 1..n), x, n+1), x, n), n = 0..40); # Muniru A Asiru, Apr 22 2018
PROG
(PARI) N=66; x='x+O('x^N); Vec(prod(k=1, N, (1+k^2*x^k)^(1/k)))
CROSSREFS
Sequence in context: A326452 A326532 A326637 * A154692 A309161 A144293
KEYWORD
sign
AUTHOR
Seiichi Manyama, Apr 22 2018
STATUS
approved