Nothing Special   »   [go: up one dir, main page]

login
A255268
a(n) = Product_{k=1..n} k!^n.
8
1, 4, 1728, 6879707136, 49302469038676377600000, 237376313799769806328950291431424000000000000, 487929826521303413461947888047619993419888153407795494912000000000000000000000
OFFSET
1,2
LINKS
Eric Weisstein's World of Mathematics, Barnes G-Function
Eric Weisstein's World of Mathematics, Superfactorial
FORMULA
a(n) = A000178(n)^n.
a(n) ~ exp(1/12 + n/12 - n^2 - 3*n^3/4) * n^(5*n/12 + n^2 + n^3/2) * 2^(n/2 + n^2/2) * Pi^(n/2 + n^2/2) / A^n, where A = 1.28242712910062263687534256886979... is the Glaisher-Kinkelin constant (see A074962).
MATHEMATICA
Table[Product[k!, {k, 1, n}]^n, {n, 1, 10}]
Table[BarnesG[n+2]^n, {n, 1, 10}]
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Vaclav Kotesovec, Feb 20 2015
STATUS
approved